

BIS CBx fast protokoll User's Guide

www.balluff.com

CONTENTS

	REFERENCES	vi
	Conventions	
	Reference Documentation	vi
	Services and Support	vii
1	CBX COMMAND PROTOCOL	
1.1	Command Protocol Matrix	
1.2	CBx Command Protocol Overview	
1.2.1	CBx Command Procedure for Gateway/Hub Interface Modules	
1.2.2	CBx Command Procedure for Cobalt Controllers	
1.3	CBx Command Protocol Packet Structures	
1.3.1	CBx Command Packet Structure	
1.3.2	CBx Response Packet Structure	3
1.3.3	CBx Multi-Tag Command Packet Structure	
1.3.4	CBx Multi-Tag Response Packet Structures	
1.4	Notification Event Messages	
1.5	Error Messages	
1.5.1	Error Codes	13
2	CBX RFID COMMANDS	4 5
2 2.1	CBX RFID COMMANDS	
2.1	CBx Command 0x02: LOCK MEMORY BLOCK	
	CBx Command 0x02: LOCK MEMORY BLOCK	
	CBx Command 0x04. FILL TAG CBx Command 0x05: READ DATA	
	CBx Command 0x05. READ DATA CBx Command 0x06: WRITE DATA	
	CBx Command 0x06. WRITE DATA	
	CBx Command 0x07: READ TAG ID CBx Command 0x08: TAG SEARCH	
	CBx Command 0x00: FAG SEARCH	
	CBx Command 0x00: START CONTINUOUS READ	
	CBx Command 0x0E: READ TAG ID AND DATA	
	CBx Command 0x0F: START CONTINUOUS READ TAG ID AND DATA	
	CBx Command 0x10: GET GATEWAY/HUB SOFTWARE VERSION	
	CBx Command 0x11: GET GATEWAY/HUB NAME	
	CBx Command 0x12: GET DIPSWITCH SETTINGS	
	CBx Command 0x12: GET NODE STATUS LIST	
	CBx Command 0x14: GET NOTIFICATION MASK	
	CBx Command 0x15: GET LAST GATEWAY/HUB ERROR	
	CBx Command 0x16: GET GATEWAY/HUB TIME	
	CBx Command 0x1A: GET DIGITAL INPUTS	
	CBx Command 0x1B: GET DIGITAL OUTPUTS	
	CBx Command 0x1C: GET SUBNET BAUD RATE	49
	CBx Command 0x21: SET GATEWAY/HUB NAME	
	CBx Command 0x24: SET NOTIFICATION MASK	
	CBx Command 0x26: SET GATEWAY/HUB TIME	53
	CBx Command 0x2A: SET/CLEAR DIGITAL OUTPUTS	54
	CBx Command 0x2C: SET SUBNET BAUD RATE	56
	CBx Command 0x30: GET CONTROLLER NAME	
	CBx Command 0x33: GET CONTROLLER CONFIGURATION	
	CBx Command 0x38: GET CONTROLLER INFO	
	CBx Command 0x40: SET CONTROLLER NAME	63

CBx Command 0x43: SET CONTROLLER CONFIGURATION	64
CBx Command 0x4E: SET CONTROLLER TIME	67
CBx Command 0x53: INITIALIZE CONTROLLER	68
CBx Command 0x54: RESET CONTROLLER	69
CBx Command 0x60: INITIALIZE GATEWAY/HUB	70
CBx Command 0x61: RESET GATEWAY/HUB	71
CBx Command 0x62: INITIALIZE ALL NODES	
CBx Command 0x63: INITIALIZE ALL NODE MACROS	73
CBx Command 0x70: START SUBNET	74
CBx Command 0x71: MOVE CONTROLLER (GATEWAY ONLY)	75
CBx Command 0x79: CLEAR PENDING RESPONSES	76
CBx Command 0x92: MULTI-TAG READ ID AND DATA ALL	77
CBx Command 0x95: MULTI-TAG BLOCK READ ALL	79
CBx Command 0x96: MULTI-TAG BLOCK WRITE ALL	81
CBx Command 0x97: MULTI-TAG GET INVENTORY	83
CBx Command 0x98: MULTI-TAG SEARCH ALL	85
CBx Command 0xA5: MULTI-TAG BLOCK READ BY ID	86
CBx Command 0xA6: MULTI-TAG BLOCK WRITE BY ID	88
CBx Command 0xC0: SET UHF CONTROLLER CONFIGURATION	90
CBx Command 0xC1: GET UHF CONTROLLER CONFIGURATION	
CBx Command 0xC2: READ EPC CODE	
CBx Command 0xC3: WRITE EPC CODE	95
CBx Command 0xC4: MULTI-TAG READ EPC CODE	96
REFERENCES	
EPC Class 1 Gen 2 Tag Memory Structure	
Command Mapping	99

Α

REFERENCES

CONVENTIONS

This manual uses the following conventions:

"User" or "Operator" refers to anyone using the CBx Protocol software to program an RFID device.

"Device" refers to the Balluff processor units.

"You" refers to the System Administrator or Technical Support person using this manual to program, maintain or troubleshoot an RFID device.

BIS M-41_ , BIS M-62_ and BIS U-62_ processor units are referred to as controllers, or just "the controller ".

REFERENCE DOCUMENTATION

The documentation related to the Gateway, Hub, and the BIS M-41_, BIS M-62_ and BIS U-62_ processor units management is available on the website:

www.balluff.com

SERVICES AND SUPPORT

Balluff provides several services as well as technical support through its website. Log on to **www.balluff.com** and click on the <u>links</u> indicated for further information including:

• PRODUCTS

Search through the links to arrive at your product page which describes specific Info, Features, Applications, Models, Accessories, and Downloads including:

- **Dashboard™**: a Windows-based utility program, which allows system testing, monitoring, and configuration using a PC. It provides Serial (RS232 or USB) and Ethernet interface configuration.
- C-Macro Builder[™]: an easy to use GUI-driven utility for Windows. This software tool allows users with minimal programming experience to "build" their own macro programs (which are stored internally on and executed directly by RFID Controllers).

1 CBX COMMAND PROTOCOL

1.1 COMMAND PROTOCOL MATRIX

Balluff RFID products support three basic command protocols: *CBx, ABx Fast* and *ABx Standard*. To determine which command protocol to utilize, please refer to the table below, which lists the different RFID devices and indicates the command protocol supported by each.

Product	CBx	ABx Fast	ABx Standard
BIS M-410-068-001_		Х	Х
BIS M-411-068-001_		Х	Х
BIS M-620-068-A01-00_		Х	Х
BIS U-620-068		Х	Х
BIS M-622/623/626_	Х		
BIS U-626-069_	Х		
BIS Z-GW-001_ all models	Х		
BIS Z-HB-001_ all models	Х		

Table 1-1: Command Protocol Matrix

NOTE

RS485-based RFID controllers are used in conjunction with Subnet16TM Gateway and Subnet16TM Hub interface modules, which use the CBx Command Protocol.

1.2 CBX COMMAND PROTOCOL OVERVIEW

In order to execute RFID commands properly, the RFID device and host computer must be able to communicate using the same language. The language that is used to communicate is referred to as the *Command Protocol*. The primary command protocol used by TCP/IP and Fieldbus connection-based RFID devices is called "*CBx*".

The *CBx Command Protocol* incorporates Balluff Multidrop Subnet16[™] networking support, which can be used with Industrial Ethernet applications.

CBx is based on a double-byte oriented packet structure where commands always contain a minimum of six data "words," even when one or more parameters are not applicable to the command.

CBx does not support the inclusion of a checksum byte, which is supported in the *ABx Fast Command Protocol*.

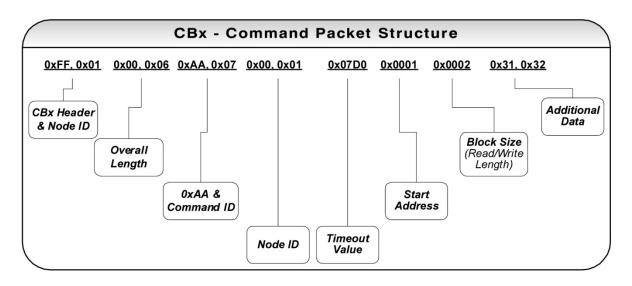
1.2.1 CBx Command Procedure for Gateway/Hub Interface Modules

Commands are initiated by a host computer or Programmable Logic Controller (PLC) and are received by a Subnet16[™] Gateway or Subnet16[™] Hub Interface Module that is connected to the host, PLC or LAN by standard Ethernet cabling. Commands are delivered from the Gateway/Hub to RFID controllers via ThickNet or ThinNet cabling.

When the Gateway/Hub receives a controller-bound command, it distributes the command to the "*Node ID*" number specified in the command packet. Each 485-based controller connected to the Multidrop Subnet16[™] network is assigned an individual Node ID number between 1 and 16.

1.2.2 CBx Command Procedure for Controllers

Commands are initiated by a host computer or Programmable Logic Controller (PLC) and are received by a BIS M-41x, BIS M-62x or BIS U-62x- Series Processors that is connected to the host, PLC or LAN by standard Ethernet cabling.


Commands are executed directly by the controller when "*Node ID 01*" is specified in the command packet (for models other than -485, the Node ID will always be 01).

1.3 CBX COMMAND PROTOCOL PACKET STRUCTURES

The CBx packet structures described herein are protocol independent and can be implemented the same for all Ethernet or Fieldbus protocols (Ethernet/IP, Modbus TCP, DeviceNet, etc.).

1.3.1 CBx Command Packet Structure

As noted, CBx commands contain a minimum of six words (not including the CBx Header and Node ID in the first word). Below is the structure of a standard CBx command packet.

NOTE

Word #	Command Packet Element	MSB	LSB
00	CBx Header in MSB: <i>0xFF</i> Node ID in LSB NOTE: These first two bytes are not required for PLC- based RFID applications (Modbus/TCP, Ethernet/IP)	0xFF	<node id=""></node>
01	Overall Length : 2-byte integer indicating the number of 16- bit " <i>words</i> " in the command packet (not including the previous two bytes: <i>CBx Header</i> and <i>Node ID</i>). Note: this value will always be at least 6, as each command has a minimum of 12-bytes (or 6 words). Overall Length will increase when additional data words are used in the command (for fills, writes, etc.).	0x00	0x06 + (number of any additional data words)
02	0xAA in MSB Command ID : single-byte value in LSB indicates command to perform	0xAA	<command ID></command
03	0x00 in MSB Node ID : LSB value indicates the Node ID number of the device to which the command is intended. See Note below.	0x00	<node id=""></node>
04	Timeout Value : 2-byte integer representing the length of time allowed for the completion of the command (when applicable). Measured in one-millisecond increments, the <i>Timeout Value</i> can have a value of 0x0001 to 0xFFFE (1 - 65,534 milliseconds).	<timeout MSB></timeout 	<timeout LSB></timeout
05	Start Address : 2-byte integer indicating the location of tag memory where a read or write operation will begin (when applicable)	<start msb=""></start>	<start lsb=""></start>
06	Block Size : 2-byte integer indicating the number of bytes that are to be read from or written to a tag during the operation (when applicable)	<size msb=""></size>	<size lsb=""></size>
07	Additional Data: (bytes 1 & 2) used to hold 2-bytes of data used for writes and fills (when applicable)	<d1></d1>	<d2></d2>
08	Additional Data: (bytes 3 & 4) used to hold an additional 2- bytes of data for writes (when applicable)	<d3></d3>	<d4></d4>

(MSB = Most Significant Byte, LSB = Least Significant Byte)

Table 1-2: CBx Command Packet Structure

NOTE

The Node ID value must be 0x20 (Node ID 32) when the command is directed to a Gateway or Hub, 0x01 to 0x10 (Node ID 01 to 16) for a controller in the Subnet16TM. When the command is directed to any other controller (i.e. serial point-to-point or Fieldbus slaves), it must be 0x01 (Node ID 01).

1.3.2 CBx Response Packet Structure

After executing a command, the controller will generate a host-bound response message. The response message will contain EITHER the results of the attempted command or an error code indicating the reason the operation could not be completed successfully. Below is the structure of a standard CBx response packet.

Word #	Response Packet Element	MSB	LSB
00	CBx Header in MSB: <i>0xFF</i> Node ID Echo in LSB NOTE: These first two bytes will not be returned in the response packet for commands executed by Node 01	0xFF	<node id<br="">Echo></node>
01	Overall Length : 2-byte integer indicating the number of <i>"words</i> " in the response packet. This value will always be at least 6 words and does not include the previous two bytes: <i>CBx Header</i> and <i>Node ID Echo</i> .	0x00	0x06 + (number of any additional data words retrieved)
02	0xAA in MSB Command Echo : single-byte LSB value identifies the command that was performed.	0xAA	<command Echo></command
03	Instance Counter: in MSB (see description on following page) Node ID Echo: Value in LSB identifies the Node ID of the device that performed the command and/or generated the response.	<instance Counter></instance 	<node id<br="">Echo></node>
04	Month and Day Timestamp	<month></month>	<day></day>
05	Hour and Minute Timestamp	<hour></hour>	<minute></minute>
06	Second Timestamp in MSB Additional Data Length: Value in LSB indicates the number of additional bytes retrieved (when applicable)	<second></second>	<additional Data Length></additional
07	Retrieved Data: (bytes 1 & 2) used to hold 2-bytes of retrieved data (when applicable)	<b1></b1>	<b2></b2>
08	Retrieved Data: (bytes 3 & 4) used to hold an additional 2- bytes of retrieved data (when applicable)	<b3></b3>	<b4></b4>

Table 1-3: CBx Response Packet Structure

Instance Counter

The Instance Counter is a one-byte value used to track the number of responses generated by each Node ID. *Instance Counter* values are stored in the internal RAM of the Gateway/Hub and are incremented by one following each response. If, for example, the controller at Node 01 has generated 10 responses, the *Instance Counter* value for Node 01 in the Gateway/Hub will read 10 (*0x0A*). When power is cycled to the Gateway/Hub, the *Instance Counter* values for all nodes (and for the Gateway/Hub itself) will be reset to zero (*0x00*).

The same is true for all other controller applications (i.e. serial point-to-point or Fieldbus slaves).

CBx Command and Response Example

In the example below, *Command 0x05 (Read Data)* is issued to the controller at Node 01, instructing it to read four bytes of data beginning at tag address 0x0020. The *Timeout Value*, measured in milliseconds, has been set to two seconds ($0x07D0 = 2000 \times .001 = 2 \text{ seconds}$) for the completion of this command.

Command from Host

Word #	Command Element	MSB	LSB
00	CBx Header in MSB: <i>0xFF</i> Node ID in LSB	0xFF	0x01
01	Overall Length of Command : (in words, not including the previous two bytes)	0x00	0x06
02	0xAA in MSB Command ID in LSB: (0x05: Read Data)	0xAA	0x05
03	0x00 in MSB Node ID in LSB	0x00	0x01
04	Timeout Value	0x07	0xD0
05	Start Address : (2-byte integer for the starting location of the read operation: 0x0020)	0x00	0x20
06	Block Size : (2-byte integer for the number of bytes to read: 0x0004)	0x00	0x04

Response from Controller

Below is an example of the response from the controller at Node 01 after successfully executing the *Read Data* command (as issued in the previous example). Because this example was performed by the controller at Node 01, the ensuing response will NOT contain the two-byte CBx Header of *0xFF* and the *Node ID* in the first word, as would be the case for all other Node ID responses.

Word #	Response Element	MSB	LSB
01	Overall Length of Response: (in words)	0x00	0x08
02	0xAA in MSB Command Echo in LSB: (0x05: Read Data)	0xAA	0x05
03	Instance Counter in MSB Node ID Echo in LSB	<instance Counter></instance 	0x01
04	Month and Day Timestamp: (March 19 th)	0x03	0x13
05	Hour and Minute Timestamp: (10:11: AM)	0x0A	0x0B
06	Seconds Timestamp in MSB: (:36 seconds) Additional Data Length in LSB: (number of bytes retrieved: 0x04)	0x24	0x04
07	Retrieved Data: (bytes 1 & 2)	0x01	0x02
08	Retrieved Data: (bytes 3 & 4)	0x03	0x04

1.3.3 CBx Multi-Tag Command Packet Structure

CBx Multi-tag Commands instruct a specified controller to read from or write to several tags at once when multiple tags are simultaneously within RF range. It is also possible to singleout and read from or write to one tag (identified by its unique tag ID number) when multiple tags are present in the RF field simultaneously.

1

Multi-tag commands only support ISO 15693 compliant RFID tags.

Word #	Command Packet Element	MSB	LSB
00	CBx Header in MSB: <i>0xFF</i> Node ID in LSB	0xFF	<node id=""></node>
01	Overall Length : 2-byte integer value indicating the number of " <i>words</i> " in the command packet (<i>not including the previous two bytes</i>).	0x00	0x08 + (number of any additional data words)
02	0xAA in MSB Command ID: LSB value indicates command to perform	0xAA	<command ID></command
03	0x00 in MSB Node ID : LSB value indicates the Node ID number of the controller to which the command is intended.	0x00	0x01
04	Timeout Value : 2-byte integer represents the maximum length of time allowed for the completion of the command, measured in one-millisecond increments, where $0x0BB8 = 3000 \times .001 = 3$ seconds. The <i>Timeout Value</i> can have a value of 0x0001 to 0xFFFE (1 - 65,534 milliseconds).	0x0B	0xB8
05	Start Address : 2-byte integer indicating the location of tag memory where a read or write operation will begin (when applicable)	<start msb=""></start>	<start lsb=""></start>
06	Block Size : 2-byte integer indicating the number of bytes that are to be read from or written to a tag during the operation (when applicable)	<size msb=""></size>	<size lsb=""></size>
07	AFI (Application Family Identifier): Single-byte MSB value (0x00-0xFF) specifies a subset of tags. 0x00 = all tags in RF range will respond to the command (<i>see description in par. below</i>). Anti-Collision Mode: Single-byte LSB value allows the user to enable the use of 16 time slots for retrieving data where 0x01 = Multi-Slot, 0x00 = Single-Slot (<i>see description in par. below</i>).	0x00	0x01
08	Tag Limit : Single-byte MSB value for the maximum # of tags expected in RF range, up to 100 (<i>see description in par. below</i>). 0x00 in LSB	0x64 (100 tags max Tag Limit)	0x00
09	Additional Data: (bytes 1 & 2) used to hold 2-bytes of data used for writes and fills (when applicable)	<d1></d1>	<d2></d2>
10	Additional Data: (bytes 3 & 4) used to hold an additional 2- bytes of data for writes (when applicable)	<d3></d3>	<d4></d4>

Below is the structure of a basic CBx Multi-tag command packet.

AFI (Application Family Identifier)

The *AFI* parameter is a one-byte value (0x00 - 0xFF) that can be used in multi-tag commands to specify a subset of tags when many are identified simultaneously in RF range. The parameter allows the user to filter tags based on a pre-written value stored at a special location on the tag.

For example, if the AFI value is set to one (0x01), only those tags with the pre-written AFI value 0x01 will respond to the given command. When an AFI value of zero (0x00) is entered for this parameter, all tag families within RF range will respond to the command.

Anti-Collision Mode

Tag collisions in RFID applications occur when numerous passive RFID tags become simultaneously activated (by the RFID controller) and thus reflect their respective signals back to the reader at the same time, such that the controller cannot differentiate between tags.

Balluff RFID controllers make use of anti-collision algorithms to enable a single reader/antenna to read more than one tag in the reader's field.

The *Anti-collision Mode* parameter controls the tag-reading algorithm used to achieve the fastest reading speed for the number of tags expected in RF range at any given moment. This parameter helps the reader/antenna avoid data collisions when simultaneously reading multiple tags.

The choices for this parameter are one (0x01) for Multi-Slot and zero (0x00) for Single-Slot.

- ONE: Setting this parameter to one (0x01), implements a multi-slot system of 16 time slots. To avoid data collisions when the controller encounters multiple tags simultaneously, data requested from each tag is transferred to the controller only during the time slot that matches a specific pattern in the tag ID number.
- ZERO: Setting this parameter to zero (0x00) utilizes a single time slot under which the requested data from all tags is transferred to the controller as soon as it becomes available. This setting can result in faster tag read performance when only a few tags are expected in the RF field

The Anti-Collision Mode parameter immediately follows the "*AFI*" parameter in the multi-tag command packet string.

Tag Limit

The *Tag Limit* parameter holds a one-byte value that indicates the maximum number of tags expected simultaneously in RF range for the given command operation. This parameter allows users to limit the number of attempted read/write operations the controller will make per execution (users do not have to wait for the Timeout to expire).

The *Tag Limit* value should be set in relation to the maximum number of tags that could possibly be present in the reading field at any one time. Setting a high value increases the number of tags that are expected in the antenna's RF field. Setting a low value can speed up multi-tag operations when only a small number of tags could be present at any given moment.

Setting the proper value is therefore a tradeoff between the number of expected tags in the reading field, and the time required to read/write to them. The permitted values range from one to 100 (0x01 - 0x64).

The *Tag Limit* parameter resides directly after the "*Anti-collision Mode*" parameter in the command string (when applicable).

Timeout Value

Multi-tag commands also contain a two-byte *Timeout Value* parameter that is used to limit the length of time for which the controller will attempt to complete a given operation. It is important to set a realistic *Timeout Value* that permits enough time for the controller to read/write to all tags specified in the command. Processing multiple-tag operations requires a longer time period than does the execution of single-tag commands.

The value is expressed in one-millisecond increments, with a maximum value of 0xFFFE (65,534 milliseconds) or approximately 60 seconds. It is recommended that users allow at least 100 ms per tag for multi-tag read operations and 150 ms per tag for multi-tag writes. Using a *Timeout Value* that is too short may cause the controller to inadvertently "time out" before the data has been successfully read from or written to all tags in RF range. For time critical applications, the optimal *Timeout Value* should be obtained through rigorous performance testing.

Tag ID / Serial Number

There are two multi-tag commands that allow the user to retrieve data from or write data to a single tag (specified by its tag ID number) when numerous tags are concurrently present in the RF field (*CBx Command 0xA5 - Multi-Tag Block Read by ID* and *CBx Command 0xA6 – Multi-Tag Block Write by ID*). The tag ID number is a unique, read-only, 64-bit (eight-byte) number stored in tag memory. Targeted tags can be recognized through a previously issued *Multi-Tag Get Inventory (0x97)* command.

1.3.4 CBx Multi-Tag Response Packet Structures

When executing multi-tag commands designed to retrieve information from several tags at once (for example *CBx Command 0x92: Multi-Tag Read ID and Data All*), the RFID controller will generate separate host-bound response packets for each tag that has been read. Below is the structure of a basic CBx multi-tag response packet generated by the controller at Node 01.

CBx Multi-tag Response Packet Structure (One Packet for Each Tag Read)

Word #	Response Packet Element	MSB	LSB
01	Overall Length : 2-byte integer indicates the number of " <i>words</i> " in the response packet.	0x00	0x06 + (number of any additional words retrieved)
02	0xAA in MSB Command Echo : single-byte value identifies the command that was performed in LSB	0xAA	0x92
03	Instance Counter : 1-byte MSB value indicates number of responses generated by the Node ID identified in the LSB. Node ID Echo : 1-byte value indicates the Node ID of the RFID controller that performed the command.	<ic></ic>	0x01
04	Month and Day Timestamp	<month></month>	<day></day>
05	Hour and Minute Timestamp	<hour></hour>	<minute></minute>
06	Second Timestamp in MSB Additional Data Length : single-byte LSB value indicates the number of additional bytes retrieved, includes both <i>Tag</i> <i>ID</i> and <i>Read Data</i> bytes (when applicable)	<second></second>	<n-bytes></n-bytes>
07	Tag ID bytes 1 and 2: holds the first two bytes of the Tag ID number	<id 1="" byte=""></id>	<id 2="" byte=""></id>
08	Tag ID bytes 3 and 4	<id 3="" byte=""></id>	<id 4="" byte=""></id>
09	Tag ID bytes 5 and 6	<id 5="" byte=""></id>	<id 6="" byte=""></id>
10	Tag ID bytes 7 and 8	<id 7="" byte=""></id>	<id 8="" byte=""></id>
11	Read Data bytes 1 and 2 : holds 2 bytes of retrieved data from tag read operations	<d01></d01>	<d02></d02>
18	Read Data bytes 15 and 16	<d15></d15>	<d16></d16>

Table 1-5: CBx Multi-Tag Response Packet Structure

CBx Multi-Tag Response Final Termination Packet Structure

After the RFID controller has issued response packets for each tag identified and/or read, a final termination packet is generated. Below is the structure of a standard CBx multi-tag response final termination packet generated by the controller at Node 01.

Word #	Final Termination Packet Element	MSB	LSB
01	Overall Length : 2-byte integer indicates the number of <i>"words</i> " in the packet.	0x00	0x07
02	0xAA in MSB, 0xFF in LSB	0xAA	0xFF
03	Instance Counter : 1-byte value indicates the number of responses generated by the Node ID identified in the LSB (this value is not to be confused with the number of tags read during a single operation) Node ID Echo : 1-byte value indicates the Node ID of the controller that performed the command.	<ic></ic>	0x01
04	Month and Day Timestamp	<month></month>	<day></day>
05	Hour and Minute Timestamp	<hour></hour>	<minute></minute>
06	Second Timestamp in MSB Additional Data Length : Single-byte LSB value indicates the number of additional bytes retrieved (value will usually = 2, for <i>Number of Tags Read/Written</i> and <i>Status</i>)	<second></second>	0x02
07	Number of Tags Read/Written in MSB, identifies the number of tags read from or written to during the operation Status in LSB (0x00 = operation completed successfully, 0x07 = Read Tag ID failed / Tag Not Found)	<n-tags></n-tags>	0x00

Table 1-6: CBx Multi-Tag Response Final Termination Packet Structure

1.4 NOTIFICATION EVENT MESSAGES

Notification Messages are small host-bound informational packets of data that are issued by a Gateway/Hub when a specified *Notification Event* occurs within the Gateway/Hub or on the Subnet16[™] network.

The Gateway/Hub stores 9 different Notification Messages internally. The Hub stores an additional 4 Notification Messages relative to its Inputs/Outputs. See the Notification Message Table below.

Notification Message Table

The following table lists the Notification Messages, their bit mask values and contains a description of the Notification Event that can be set to trigger the notification.

Bit	Notification Message	Notification Event Description
1	CONTROLLER IS HEALTHY	Sent whenever the status of a controller changes to 'Healthy'
2	CONTROLLER HAS PROBLEM	Sent whenever a controller is marked 'Has Problem'
3	CONTROLLER STOPPED RESPONDING	Sent whenever a controller is marked 'Stopped Responding'
4	CONTROLLER DEACTIVATED	Sent whenever a controller is deactivated (is marked 'Inactive')
5	CONTROLLER MISSED POLL	Sent whenever a controller misses a poll
6	CONTROLLER ADDRESS CONFLICT	Sent whenever the Gateway/Hub detects a Node ID conflict
7	CONTROLLER CONFIGURATION FAILURE	Sent whenever the Gateway/Hub fails to configure a controller
8	TAG PRESENT AT NODE *	Sent whenever a tag is first recognized in the RF field of the specified node
9	TAG NOT PRESENT AT NODE *	Sent whenever a tag is no longer recognized within or has exited the RF field of the specified node
10	INPUT SET (Hub only)	Sent when one of the Hub's four Inputs has been set
11	INPUT CLEARED (Hub only)	Sent when one of the Hub's four Inputs has been cleared
12	OUTPUT SET (Hub only)	Sent when one of the Hub's four Outputs has been set
13	OUTPUT CLEARED (Hub only)	Sent when one of the Hub's four Outputs has been cleared

 Table 1-7: Notification Message Table

* - *Tag Presence* must be **enabled** on the RFID controller.

and
NOTE

The Gateway only supports Notification Messages 1 - 9. Notification Messages 10 - 13 pertain to the status of the Hub's Digital Inputs and Outputs.

Notification Messages are enabled or disabled by setting or clearing the corresponding bit within the 16-bit Notification Mask (see Command 0x24). If the bit is set, the corresponding Notification Message will be generated when the specified event occurs.

When a Notification Message is enabled and its corresponding Notification Event occurs, the Notification Message will be generated by the Gateway/Hub and will be written to the Node Output Page of the affected Subnet Node (i.e., the Node ID that triggered the notification). See <u>Command Mapping</u> in the appendix for more details.

Triggered Notification Messages are provided immediately to the host.

Notification Message Packet Structure

Word #	Notification Message Packet Element	MSB	LSB
01	Overall Length of Notification Message : 2-byte integer indicates the number of " <i>words</i> " in the packet.	0x00	0x06
02	0xFE in MSB = Notification Message Flag Notification Event in LSB	0xFE	< Notification Event >
03	Instance Counter : (a Notification Message is considered a response; therefore the Instance Counter is incremented by one) Node ID Echo in LSB: value indicates the Node ID of the device to which the Notification Message refers. (<i>example 0x05</i>)	<ic></ic>	0x05
04	Month and Day Timestamp	<month></month>	<day></day>
05	Hour and Minute Timestamp	<hour></hour>	<minute></minute>
06	Second Timestamp in MSB 0x00:in LSB	<second></second>	0x00

1.5 ERROR MESSAGES

CBx Error Response Packet Structure

A one-byte **Error Code** will be returned in the MSB of the **seventh** data word of an error response packet (followed by 0x00 in the LSB.

Word #	Error Response Element	MSB	LSB
01	Overall Length : 2-byte integer indicating the number of " <i>words</i> " in the response packet. This value will always be 7 words (6 + 1 for the error code).	0x00	0x07
02	0xFF in the MSB = Error Flag (indicates that an error occurred). Error Information Byte : 0xFF in the LSB indicates that a controller-based error occurred. Any value other than 0xFF indicates that a Gateway/Hub-based error occurred (and identifies the command that was attempted when the error occurred).	0xFF	<error info=""></error>
03	Instance Counter : this 1-byte value in the MSB tallies the number of responses from a given Node ID. Node ID Echo : the 1-byte LSB value indicates the Node ID of the controller for which the command was intended.	<instance Counter></instance 	<node id<br="">Echo></node>
04	Month and Day Timestamp	<month></month>	<day></day>
05	Hour and Minute Timestamp	<hour></hour>	<minute></minute>
06	Second Timestamp in MSB Additional Data Length: in LSB (0x01 for Error Code)	<second></second>	0x01
07	Error Code: 1-byte Error Code in MSB 0x00 in LSB	<error code=""></error>	0x00

 Table 1-8: CBx Error Response Packet Structure

Error Response Example

Below is an example of a CBx Error Response for Error Code 0x07 (Tag Not Found).

Error Response Parameter	MSB	LSB
0x00 in MSB	0x00	0x07
Overall Length of Response in LSB (in words)		
Error Flag in MSB. Error Information Byte in LSB	0xFF	0xFF
Instance Counter in MSB Node ID Echo in LSB	0x00	0x01
Month and Day Timestamp:(March 19 th)	0x03	0x13
Hour and Minute Timestamp: (10:11: AM)	0x0A	0x0B
Seconds Timestamp in MSB: (<i>:36 seconds</i>). Additional Data Length in LSB: (<i>0x01 for Error Code</i>)	0x24	0x01
Error Code in MSB (0x07 = Tag Not Found) 0x00 in LSB	0x07	0x00

1.5.1 Error Codes

Error Code	Error	Description	
0x02	LOCK TAG BLOCK FAILED	Lock Tag Block Operation Failed	
0x04	FILL TAG FAILED	Fill Operation Failed	
0x05	READ DATA FAILED	Read Data Command Failed	
0x06	WRITE DATA FAILED	Write Data Command Failed	
0x07	READ TAG ID / TAG SEARCH FAILED	Read Tag ID / Tag Search Command Failed (Tag Not Found)	
0x21	INVALID SYNTAX	Command Contained a Syntax Error	
0x23	INVALID TAG TYPE	Invalid or Unsupported Tag Type	
0x30	INTERNAL CONTROLLER ERROR	Generic Internal Controller Error	
0x31	INVALID CONTROLLER TYPE	Invalid Controller Type (when Setting Configuration)	
0x32	INVALID PROGRAMMING ADDRESS	Invalid Tag Programming Address Specified in the Command	
0x35	INVALID RESET	Invalid Hardware Reset	
0x36	SET CONFIGURATION ERROR	Controller Configuration not Written	
0x37	GET CONFIGURATION ERROR	Controller Configuration not Read	
0x80	UNKNOWN GATEWAY/HUB ERROR	Generic Interface Module Error – an error occurred, but the Gateway/Hub could not determine the error code.	
0x81	COMMAND MALFORMED	Generic Command Syntax Error	
0x83	COMMAND INVALID OPCODE	Invalid Command ID Number specified in the command.	
0x84	COMMAND INVALID PARAMETER	A parameter specified in the command was invalid.	

Error Code	Error	Description
0x85	COMMAND INVALID CONTROLLER ID	An invalid Node ID was specified in the command, or no controller was detected/present at the specified Node.
0x86	COMMAND INACTIVE CONTROLLER ID	The Node ID specified in the command is currently inactive.
0x87	SUBNET DEVICE SELECT FAILED	Internal Subnet Error – the specified Subnet device failed.
0x88	SUBNET DEVICE FAILED TO ACKNOWLEDGE	Internal Subnet Error - the specified Subnet device failed to respond to polling.
0x89	SUBNET RESPONSE MALFORMED	Internal Subnet Error – a controller returned a malformed response.
0x8A	SUBNET RESPONSE TIMEOUT	Internal Subnet Error – a controller was unable to generate a response before timeout was reached.
0x8B	SUBNET RESPONSE INVALID CHECKSUM	Internal Subnet Error – a controller generated a response that has an invalid checksum.
0x8C	SUBNET DEVICE CONFLICT DETECTED	Internal Subnet Error – a Node ID conflict has been detected
0x8D	BUFFER OVERFLOW	Internal Error – buffer limit was exceeded
0x8E	FLASH FAILURE	Internal Flash Memory Error
0x93	NODE MISMATCH ERROR	The Node specified in the command did not match the Node to which the command was sent.
0x94	CRC ERROR	Cyclic Redundancy Check Error
0x95	PROTOCOL ERROR	Internal Communications Error

2 CBX RFID COMMANDS

2.1 CBX RFID COMMAND TABLE

Command ID	Command Name	Description		
RFID Tag Commands				
<u>0x02</u>	Lock Memory Block	Write protects a block of tag memory		
<u>0x04</u>	Fill Tag	Writes a specified data byte value to all defined tag addresses		
<u>0x05</u>	Read Data	Reads a specified length of data from a contiguous (sequential) area of tag memory		
<u>0x06</u>	Write Data	Writes a specified number of bytes to a contiguous area of tag memory		
<u>0x07</u>	Read Tag ID	Reads a tag's unique tag ID number		
<u>0x08</u>	Tag Search	Instructs the controller to search for a tag in its RF field		
<u>0x0C</u>	Execute Macro	Instructs the controller to execute one of its eight possible macros		
<u>0x0D</u>	Start Continuous Read	Instructs the controller to start or stop Continuous Read mode.		
<u>0x0E</u>	Read Tag ID and Data	Reads a tag's ID and the requested number of bytes from tag memory		
<u>0x0F</u>	Start Continuous Read Tag ID and Data	Places the controller into (or out of) Continuous Read mode and (when evoked) will retrieve a tag's ID.		
<u>0xC2</u>	Read EPC Code	Reads the 12-byte EPC memory area of an EPC Class 1 Gen 2 tag		
<u>0xC3</u>	Write EPC Code	Writes the 12-byte EPC memory area of an EPC Class 1 Gen 2 tag		
	Controller C	ommands		
<u>0x30</u>	Get Controller Name	Retrieves the controller's user-defined name		
<u>0x33</u>	Get Controller Configuration	Retrieves the controller's configuration settings		
<u>0x38</u>	Get Controller Info	Retrieves hardware, firmware and serial number information from the controller		
<u>0x40</u>	Set Controller Name	Used to set (create or modify) the user- defined name for the controller		
<u>0x43</u>	Set Controller Configuration	Used to set (configure or modify) the controller's configuration parameters and settings		
<u>0x4E</u>	Set Controller Time	Used to set the time for the controller		
<u>0x53</u>	Initialize Controller	Removes all configuration settings stored for the controller		
<u>0x54</u>	Reset Controller	Resets power to the controller		

	•
	~
-	_

Command ID	Command Name	Description		
Additional UHF-Series Controller Commands				
<u>0xC0</u>	Set UHF Controller Configuration	Used to set (configure or modify) additional UHF controller configuration parameters		
<u>0xC1</u>	Get Controller Configuration	Retrieves the UHF controller's additional configuration parameter settings		
	I/O Comr	nands		
<u>0x1A</u>	Get Digital Inputs	Retrieves the status of the RFID Controller or Hub's digital input(s)		
<u>0x1B</u>	Get Digital Outputs	Retrieve the status of the RFID Controller or Hub's digital outputs		
<u>0x2A</u>	Set/Clear Digital Outputs	Used to set and/or clear any or all of the RFID Controller or Hub's digital outputs		
	Gateway/Hub Sub	net Commands		
<u>0x10</u>	Get Gateway/Hub Software Version	Retrieves the version number of the firmware code installed on the Gateway/Hub		
<u>0x11</u>	Get Gateway/Hub Name	Retrieves the Gateway/Hub's user-defined ASCII name		
<u>0x12</u>	Get Dipswitch Settings	Retrieves the status of the Gateway/Hub configuration dipswitches		
<u>0x13</u>	Get Node Status List	Retrieves the operational status of the Gateway/Hub Subnet Nodes		
<u>0x14</u>	Get Notification Mask	Retrieves the user-defined 16-bit "Notification Mask" that determines for which events the Gateway/Hub notifies the host PC		
<u>0x15</u>	Get Last Gateway/Hub Error	Retrieves information from the Gateway/Hub regarding the last or most recent error that was experienced		
<u>0x16</u>	Get Gateway/Hub Time	Retrieves the current date and time as set internally on the Gateway/Hub		
<u>0x1C</u>	Get Subnet Baud Rate	Retrieves the baud rate of the Subnet network		
<u>0x21</u>	Set Gateway/Hub Name	Writes to flash memory, a user-defined "friendly" name for the Gateway/Hub		
<u>0x24</u>	Set Notification Mask	Used to customize or modify the Gateway/Hub's 16-bit Notification Mask		
<u>0x26</u>	Set Gateway/Hub Time	Used to set the Gateway/Hub's internal clock and calendar		
<u>0x2C</u>	Set Subnet Baud Rate	Used to modify and store changes to the Subnet network baud rate		
<u>0x60</u>	Initialize Gateway/Hub	Clears all Subnet Node configuration information stored in the Gateway/Hub's flash memory		
<u>0x61</u>	Reset Gateway/Hub	Performs an electrical reset of the Gateway/Hub		

Command ID	Command Name	Description
<u>0x62</u>	Initialize All Nodes	Removes all stored configuration information for all nodes and reconfigures them to factory defaults
<u>0x63</u>	Initialize All Node Macros	Removes all stored macros from all nodes
<u>0x70</u>	Start Subnet	Instructs the Gateway/Hub to begin "polling" the Subnet network
<u>0x71</u>	Move Controller (Gateway Only)	Used to move all stored configuration data for a particular Node ID to another specified Node ID (Gateway only)
<u>0x79</u>	Clear Pending Response	Deletes all pending or buffered responses in the Gateway/Hub and resets all Instance Counters to zero
	Multi-Tag RFID	Commands
<u>0x92</u>	Multi-Tag Read ID and Data All	Retrieves the tag ID number and a contiguous segment of data from all RFID tags in range
<u>0x95</u>	Multi-Tag Block Read All	Retrieves a contiguous segment of data from all RFID tags in range
<u>0x96</u>	Multi-Tag Block Write All	Writes a contiguous segment of data to all RFID tags in range
<u>0x97</u>	Multi-Tag Get Inventory	Retrieves the tag ID number from all RFID tags found in range
<u>0x98</u>	Multi-Tag Search All	Checks for the presence of RFID tags in RF range and returns only the number of tags found
<u>0xA5</u>	Multi-Tag Block Read by ID	Reads a contiguous segment of data from a specific RFID tag identified by its tag ID
<u>0xA6</u>	Multi-Tag Block Write by ID	Writes a contiguous segment of data to a specific RFID tag identified by its tag ID
<u>0xC4</u>	Multi-Tag Read EPC Code	Reads the 12-byte EPC memory area of all EPC Class 1 Gen 2 tags found in range

Table 2-1: CBx RFID Command Table

Command 0x02 - Description

The Lock Memory Block Command allows the user to write protect or lock a block of tag memory to prevent data from being overwritten.

The Starting Block parameter specifies the first block of tag memory addresses to be locked. The Number of Blocks parameter specifies the number of blocks to lock, $(1 \sim N)$.

Depending on the architecture of the tag used, a "block" can be either 4-bytes or 8-bytes. Users must know the memory architecture and block size of their tag before using this command.

This command only supports ISO 15693 compliant RFID tags.

2

Extreme caution should be taken when using this command. Once a block of tag memory is locked, it cannot be unlocked and all data written to the block is permanent.

Command 0x02 – CBx Example

This example instructs the controller at Node 01 to lock two blocks of tag memory, beginning at block address 0x00 (the first available block). A *Timeout Value* of two seconds (0x07D0 = 2000 x one-millisecond increments) is set for the completion of this command.

Command from Host

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x01
Overall Length of Command (in words)	0x00	0x06
0xAA in MSB, Command ID in LSB: (0x02)	0xAA	0x02
0x00 in MSB, Node ID in LSB	0x00	0x01
Timeout Value	0x07	0xD0
Starting Block : (<i>MSB always = 0x00</i>)	0x00	0x00
Number of Blocks: (MSB always = 0x00)	0x00	0x02

Response from Controller

Parameter Field	MSB	LSB
Overall Length of Response (in words)	0x00	0x06
0xAA in MSB, Command Echo in LSB (<i>0x02</i>)	0xAA	0x04
Instance Counter in MSB, Node ID Echo in LSB	<ic></ic>	0x01
Month and Day Timestamp: (March 19 th)	0x03	0x13
Hour and Minute Timestamp: (10:11: AM)	0x0A	0x0B
Seconds Timestamp in MSB: (:36 seconds) 0x00 in LSB	0x24	0x00

CBX COMMAND 0X04: FILL TAG

Command 0x04 - Description

The *Fill Tag Command* instructs the specified RFID controller to fill multiple contiguous addresses of an RFID tag with a single byte value. This command is commonly used to clear sequential segments of tag memory by writing the one-byte value repeatedly across a specified range of tag addresses.

This command requires one *Data Byte Value*, a *Start Address* and a *Fill Length*. It will then proceed to fill the tag with the *Data Byte Value*, for the specified *Fill Length* (number of consecutive bytes), beginning at the *Start Address*.

When the *Start Address* is set to zero (*0x0000*), the fill will begin at the first available byte of tag memory. When the *Fill Length* is set to zero (*0x0000*), the controller will write fill data from the *Start Address* to the end of the tag's memory. If the *Fill Length* value extends beyond the last byte in the tag, the controller will return an error.

The "Fill Length" in this command represents the number of bytes to fill on the tag, not the length of the 'Data Byte Value' provided in the command, which is always one byte.

Command 0x04 - CBx Example

This example instructs the controller at Node 01 to fill an entire tag with the ASCII character 'A' (*Data Byte Value 0x41*) starting at the beginning of the tag (*Start Address 0x0000*). A *Timeout Value* of 2 seconds ($0x07D0 = 2000 \times one-millisecond increments$) is set for the completion of the command.

Command from Host

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x01
Overall Length of Command (in words)	0x00	0x07
0xAA in MSB, Command ID in LSB: (0x04)	0xAA	0x04
0x00 in MSB, Node ID in LSB	0x00	0x01
Timeout Value	0x07	0xD0
Start Address	0x00	0x00
Fill Length	0x00	0x00
Data Byte Value in MSB ($A = 0x41$), 0x00 in LSB	0x41 <a>	0x00

Response from Controller

Parameter Field	MSB	LSB
Overall Length of Response (in words)	0x00	0x06
0xAA in MSB, Command Echo in LSB (<i>0x04</i>)	0xAA	0x04
Instance Counter in MSB, Node ID Echo in LSB	<ic></ic>	0x01
Month and Day Timestamp: (March 19 th)	0x03	0x13
Hour and Minute Timestamp: (10:11: AM)	0x0A	0x0B
Seconds Timestamp in MSB: (:36 seconds) 0x00 in LSB	0x24	0x00

CBX COMMAND 0X05: READ DATA

Command 0x05 - Description

The *Read Data Command* instructs the controller to retrieve a specific number of bytes of data from a contiguous (*sequential*) area of an RFID tag's memory.

When the *Start Address* is set to zero (*0x0000*), the controller will start reading at the beginning (or first accessible byte) of the tag. The minimum *Block Size* is one byte, the maximum *Block Size* for read operations is 1024 bytes or the entire read/write address space of the tag (whichever is less). If the *Block Size* exceeds the last available tag address, the controller will return an error code.

Command 0x05 - CBx Example

This example instructs the controller at Node 01 to read four bytes of data from a tag starting at address 0x0001. A *Timeout Value* of 2 seconds ($0x07D0 = 2000 \times one-millisecond increments) is set for the completion of the command.$

Command from Host

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x01
Overall Length of Command (in words)	0x00	0x06
0xAA in MSB. Command ID in LSB (0x05)	0xAA	0x05
0x00 in MSB. Node ID in LSB	0x00	0x01
Timeout Value	0x07	0xD0
Start Address	0x00	0x01
Block Size	0x00	0x04

Response from Controller

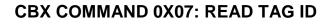
Parameter Field	MSB	LSB
Overall Length of Response (in words)	0x00	0x08
0xAA in MSB. Command Echo in LSB	0xAA	0x05
Instance Counter in MSB. Node ID Echo in LSB	<ic></ic>	0x01
Month and Day Timestamp:(March 19 th)	0x03	0x13
Hour and Minute Timestamp: (10:11: AM)	0x0A	0x0B
Seconds Timestamp in MSB: (<i>:36 seconds</i>). Additional Data Length in LSB: (<i>0x04</i>)	0x24	0x04
Read Data (bytes 1 and 2)	0x01	0x02
Read Data (bytes 3 and 4)	0x03	0x04

CBX COMMAND 0X06: WRITE DATA

Command 0x06 - Description

The *Write Data Command* instructs the controller to write specified information to an RFID tag. This command is used to store segments of data in contiguous tag memory locations. It is capable of transferring up to 100 bytes of data from the host to the tag with one command. When the *Start Address* is set to zero (*0x0000*), the controller will begin writing to the first available byte of tag memory. The shortest possible *Block Size* is one byte, the maximum *Block Size* for write operations is 1024 bytes or the entire read/write address space of the tag (whichever is less). If the *Block Size* exceeds the last available tag address, the controller will return an error code.

Command 0x06 - CBx Example


This example instructs the controller at Node 01 to write the five ASCII characters H, E, L, L, O (*Data Byte Values: 0x48, 0x45, 0x4C, 0x4C and 0x4F*) to a tag starting at address 0x000. A *Timeout Value* of 2 seconds ($0x07D0 = 2000 \times one-millisecond increments$) is set for the completion of this command.

Command from Host

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x01
Overall Length of Command (<i>in words</i>)	0x00	0x09
0xAA in MSB. Command ID in LSB (0x06)	0xAA	0x06
0x00 in MSB. Node ID in LSB	0x00	0x01
Timeout Value (measured in ms)	0x07	0xD0
Start Address	0x00	0x00
Block Size (in bytes)	0x00	0x05
Write Data (bytes 1 and 2)	0x48 <h></h>	0x45 <e></e>
Write Data (bytes 3 and 4)	0x4C <l></l>	0x4C <l></l>
Write Data (byte 5) in MSB. 0x00 in LSB	0x4F <o></o>	0x00

Response from Controller

Parameter Field	MSB	LSB
Overall Length of Response (in words)	0x00	0x06
0xAA in MSB. Command Echo in LSB	0xAA	0x06
Instance Counter in MSB. Node ID Echo in LSB	<ic></ic>	0x01
Month and Day Timestamp: (March 19 th)	0x03	0x13
Hour and Minute Timestamp: (10:11: AM)	0x0A	0x0B
Seconds Timestamp in MSB (:36 seconds). 0x00 in LSB	0x24	0x00

Command 0x07 - Description

The *Read Tag ID Command* instructs the RFID controller to locate a tag in range and retrieve its unique tag identification number. If a tag is not located before the Timeout Value expires, an error will be returned.

RFID tags are assigned a unique tag ID number during the manufacturing process. After a tag ID number has been assigned to a tag, the value cannot be altered and is not considered part of the available read/write memory space of the tag.

- ISO 14443 compliant tags receive a 4-byte tag ID number. By using just four bytes, tag manufacturers can generate over 4.2 billion possible ISO 14443 compliant tag ID numbers.
- ISO 15693 compliant tags are given an 8-byte tag ID number. When using eight bytes, manufacturers can generate over 280 trillion possible tag ID numbers.

Command 0x07 - CBx Example

This example instructs the controller at Node 01 to retrieve a tag's ID, which, in this example, is the eight-byte value E0040100002E16AD. A *Timeout Value* of 2 seconds (0x07D0 = 2000 x one-millisecond increments) is set for the completion of the command.

Command from Host

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x01
Overall Length of Command (in words)	0x00	0x06
0xAA in MSB. Command ID in LSB (0x07)	0xAA	0x07
0x00 in MSB. Node ID in LSB	0x00	0x01
Timeout Value	0x07	0xD0
Not Used (0x00, 0x00)*	0x00	0x00
Not Used (0x00, 0x00)*	0x00	0x00

Even when one or more command parameters are not used in a particular command, the parameter's two bytes must still be accounted for in the Overall Length. Include all "zeroes" for these bytes (0x00, 0x00).

Response from Controller (Tag Found)

Parameter Field	MSB	LSB
Overall Length of Response (in words)	0x00	0x0A
0xAA in MSB, Command Echo in LSB	0xAA	0x07
Instance Counter in MSB, Node ID Echo in LSB	<ic></ic>	0x01
Month and Day Timestamp: (March 19 th)	0x03	0x13
Hour and Minute Timestamp: (10:11: AM)	0x0A	0x0B
Seconds Timestamp in MSB: (<i>:36 seconds</i>). Additional Data Length in LSB: (<i>0x08</i>)	0x24	0x08
Tag ID (bytes 1 & 2)	0xE0	0x04
Tag ID (bytes 3 & 4)	0x01	0x00
Tag ID (bytes 5 & 6)	0x00	0x2E
Tag ID (bytes 7 & 8)	0x16	0xAD

Response from Controller (Tag Not Found)

Parameter Field	MSB	LSB
Overall Length of Response (in words)	0x00	0x07
Error Flag in MSB = 0xFF. Error Information Byte in LSB. 0xFF in the LSB indicates that a controller-based error occurred. Any value other than 0xFF indicates that a Gateway or Hub-based error occurred (and identifies the command that was attempted when the error occurred).	0xFF	0xFF
Instance Counter in MSB, Node ID Echo in LSB	<ic></ic>	0x01
Month and Day Timestamp: (March 19 th)	0x03	0x13
Hour and Minute Timestamp: (10:11: AM)	0x0A	0x0B
Seconds Timestamp in MSB: (:36 seconds). Additional Data Length in LSB: (0x01)	0x24	0x01
Error Code in MSB (<i>0x07</i> = <i>"Tag Not Found"</i>). 0x00 in LSB	0x07	0x00

CBX COMMAND 0X08: TAG SEARCH

Command 0x08 - Description

The *Tag Search Command* instructs the controller to search for the presence of a tag within RF range of the antenna. If the controller finds a tag it will return a *Command Response* to the host. If a tag is not located before the Timeout Value expires, an error will be returned.

Command 0x08 - CBx Example

This example instructs the controller at Node 01 to search for the presence of a tag within RF range of the antenna. A *Timeout Value* of 2 seconds (0x07D0 = 2000 x one-millisecond increments) is set for the completion of the command.

Command from Host

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x01
Overall Length of Command (in words)	0x00	0x06
0xAA in MSB, Command ID in LSB: (0x08)	0xAA	0x08
0x00 in MSB, Node ID in LSB	0x00	0x01
Timeout Value	0x07	0xD0
Not Used (0x00, 0x00)	0x00	0x00
Not Used (0x00, 0x00)	0x00	0x00

Response from Controller (Tag Found)

Parameter Field	MSB	LSB
Overall Length of Response (in words)	0x00	0x06
0xAA in MSB, Command Echo in LSB	0xAA	0x08
Instance Counter in MSB, Node ID Echo in LSB	<ic></ic>	0x01
Month and Day Timestamp: (March 19 th)	0x03	0x13
Hour and Minute Timestamp: (10:11: AM)	0x0A	0x0B
Seconds Timestamp in MSB: (:36 seconds). 0x00 in LSB	0x24	0x00

Response from Controller (Tag Not Found)

Parameter Field	MSB	LSB
Overall Length of Response (in words)	0x00	0x07
Error Flag in MSB: (<i>0xFF</i>). Error Information Byte in LSB. 0xFF in the LSB indicates that a controller-based error occurred. Any value other than 0xFF indicates that a Gateway/Hub-based error occurred (and identifies the command that was attempted when the error occurred).	0xFF	0xFF
Instance Counter in MSB, Node ID Echo in LSB	<ic></ic>	0x01
Month and Day Timestamp: (March 19 th)	0x03	0x13
Hour and Minute Timestamp: (10:11: AM)	0x0A	0x0B
Seconds Timestamp in MSB: (<i>:36 seconds</i>). Additional Data Length in LSB: (<i>0x01</i>)	0x24	0x01
Error Code in MSB (0x07 = "Tag Not Found"). 0x00 in LSB	0x07	0x00

CBX COMMAND 0X0C: EXECUTE MACRO

Command 0x0C - Description

2

The *Execute Macro Command* is used to perform one of the controller's eight possible macros.

To design your own RFID command macros, use the C-Macro[™] Builder software tool.

The value 0x00 in the *Macro Number* means stop all macro execution.

Command 0x0C - CBx Example

This example instructs the controller at Node 01 to execute Macro #1.

Command from Host

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x01
Overall Length of Command (in words)	0x00	0x06
0xAA in MSB, Command ID in LSB: (<i>0x0C</i>)	0xAA	0x0C
0x00 in MSB, Node ID in LSB	0x00	0x01
Macro Number in MSB: (<i>01 - 08</i>) 0x00 in LSB	0x01	0x00
Not Used: (0x00, 0x00)	0x00	0x00
Not Used: (0x00, 0x00)	0x00	0x00

Response from Controller

Parameter Field	MSB	LSB
Overall Length of Response (in words)	0x00	0x06
0xAA in MSB, Command Echo in LSB	0xAA	0x0C
Instance Counter in MSB, Node ID Echo in LSB	<ic></ic>	0x01
Month and Day Timestamp: (March 19 th)	0x03	0x13
Hour and Minute Timestamp: (10:11: AM)	0x0A	0x0B
Seconds Timestamp in MSB: (:36 seconds). 0x00 in LSB	0x24	0x00

CBX COMMAND 0X0D: START CONTINUOUS READ

Command 0x0D - Description

The *Start Continuous Read Command* instructs the controller to begin (or stop, when evoked) the continual reading of any tag that enters RF range.

When the controller is in *Continuous Read* mode, it will constantly emit RF energy in an attempt to read any tag that comes into range of the antenna. As a tag enters the antenna field, it is immediately read and the data is passed to the host. The controller will continue to read the tag but will not re-send the same data to the host until the tag has moved outside the RF field for a specified time period. This parameter is known as the *Duplicate Read Delay*, which prevents redundant data transmissions when the controller is in Continuous Read mode.

If another RFID command is executed while the controller is in *Continuous Read* mode, the Controller will temporarily stop continuous reading to execute the command, after which the controller will return to *Continuous Read* mode.

The *Continuous Read* command contains three primary components: a *Start Address*, a *Block Size* and a *Duplicate Read Delay* value.

Start Address: The *Start Address* is a 2-byte integer indicating the tag address location where the read will begin.

Block Size: The *Block Size* is a 2-byte integer that represents the number of tag data bytes to retrieve. By setting this parameter to one (*0x0001*) or higher, *Continuous Read* mode will be switched ON at the completion of the command. <u>Setting the *Block Size* to zero (*0x0000*) will disable or turn *Continuous Read* mode off.</u>

Duplicate Read Delay: During *Continuous Read* mode, any tag that comes within range of the antenna will be constantly read and the requested data from the tag will be passed to the host. This single-byte delay parameter indicates the number of seconds that a tag must remain out of RF range before it can be re-read and have its data sent to the host for a second time. It is implemented to enable the operator to limit the volume of information sent by the controller. The *Duplicate Read Delay* parameter can have a value of 0 to 60 seconds. When the *Duplicate Read Delay* value is set to zero, the controller will continuously read AND transmit duplicate tag data to the host.

Continuous Read at Power-up

By default, *Continuous Read* mode is not restarted if the controller is reset. However, through the use of the *DashboardTM Utility*, the controller can be configured to enter *Continuous Read* mode automatically after a reset or power-up. For more information regarding the Balluff DashboardTM Utility, visit the website at <u>www.balluff.com</u>.

2

This example places the controller at Node 01 in *Continuous Read* mode and retrieves 4 bytes of data from the tag starting at address 0x0001. The *Duplicate Read Delay* is set to 2 seconds ($0x02 = 2 \times 1$ second increments).

Command from Host (Starting Continuous Read)

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x01
Overall Length of Command: (in words)	0x00	0x06
0xAA in MSB, Command ID in LSB: (<i>0x0D</i>)	0xAA	0x0D
0x00 in MSB, Node ID in LSB	0x00	0x01
0x00 in MSB, Duplicate Read Delay in LSB	0x00	0x02
Start Address	0x00	0x01
Block Size (in bytes)	0x00	0x04

Response from Controller (Continuous Read Evoked)

Parameter Field	MSB	LSB
Overall Length of Response (in words)	0x00	0x08
0xAA in MSB, Command Echo in LSB	0xAA	0x0D
Instance Counter in MSB. Node ID Echo in LSB	<ic></ic>	0x01
Month and Day Timestamp: (March 19 th)	0x03	0x13
Hour and Minute Timestamp: (10:11: AM)	0x0A	0x0B
Seconds Timestamp in MSB: (:36 seconds). Additional Data Length in LSB: (0x04)	0x24	0x04
Read Data (bytes 1 & 2)	0x05	0xAA
Read Data (bytes 3 & 4)	0xE7	0x0A

To exit out of Continuous Read mode, re-issue the command with zero (0x0000) for the Block Size.

Command from Host (Stopping Continuous Read)

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x01
Overall Length of Command (in words)	0x00	0x06
0xAA in MSB, Command ID in LSB (<i>0x0D</i>)	0xAA	0x0D
0x00 in MSB, Node ID in LSB	0x00	0x01
0x00 in MSB, Duplicate Read Delay in LSB	0x00	0x02
Start Address	0x00	0x00
Block Size (in bytes)	0x00	0x00

Response from Controller (Continuous Read Stopped)

Parameter Field	MSB	LSB
Overall Length of Response (in words)	0x00	0x06
0xAA in MSB, Command Echo in LSB	0xAA	0x0D
Instance Counter in MSB. Node ID Echo in LSB	<ic></ic>	0x01
Month and Day Timestamp: (March 19 th)	0x03	0x13
Hour and Minute Timestamp: (10:12: AM)	0x0A	0x0C
Seconds Timestamp in MSB: (:36 seconds). 0x00 in LSB	0x24	0x00

Continuous Read Mode Controller LED Behavior

LED	Behavior	Description
READY	ON	Controller is powered and functioning
СОМ	ON	Duplicate Read Delay \geq 1 and a tag has entered the RF field. COM LED will remain ON while a tag is in the RF field. After the tag has exited the RF field the COM light will remain ON for the duration of the Duplicate Read Delay before turning OFF.
COM	BLINKING	Duplicate Read Delay = 0 and a tag is in the RF field
RF	ON	Continuous Read mode is enabled

Table 2-2: Continuous Read Mode LED Behavior

CBX COMMAND 0X0E: READ TAG ID AND DATA

Command 0x0E - Description

The *Read Tag ID and Data Command* instructs the RFID controller to retrieve a tag's unique identification (*Tag ID*) number followed by the requested data. The minimum *Block Size* for read operations is one byte, the maximum *Block Size* for read operations is 1024 bytes or the entire read/write address space of the tag (minus the number of tag ID bytes), whichever is less.

Command 0x0E - CBx Example

This example instructs the controller at Node 01 to retrieve the tag ID and two bytes beginning at address 0x0001 from a tag within range of the controller. A *Timeout Value* of 2 seconds ($0x07D0 = 2000 \times$ one-millisecond increments) is set for the completion of the command. In this example the tag ID number retrieved is E0040100002E16AD.

Command from Host

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x01
Overall Length of Command (in words)	0x00	0x06
0xAA in MSB, Command ID in LSB: (0x0E)	0xAA	0x0E
0x00 in MSB, Node ID in LSB	0x00	0x01
Timeout Value (measured in ms)	0x07	0xD0
Start Address	0x00	0x01
Block Size	0x00	0x02

Response from Controller

Parameter Field	MSB	LSB
Overall Length of Response (in words)	0x00	0x06 + number of additional words retrieved
0xAA in MSB, Command Echo in LSB	0xAA	0x0E
Instance Counter in MSB. Node ID Echo in LSB	<ic></ic>	0x01
Month and Day Timestamp: (March 19 th)	0x03	0x13
Hour and Minute Timestamp: (10:11: AM)	0x0A	0x0B
Seconds Timestamp in MSB: (<i>:36 seconds</i>). Additional Data Length in LSB: (<i>0x0A</i>)	0x24	0x0A
Tag ID (bytes 1 and 2)	0xE0	0x04
Tag ID (bytes 3 and 4)	0x01	0x00
Tag ID (bytes 5 and 6)	0x00	0x2E
Tag ID (bytes 7 and 8)	0x16	0xAD
Returned Data (bytes 1 and 2)	0x01	0x02

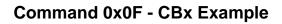
CBX COMMAND 0X0F: START CONTINUOUS READ TAG ID AND DATA

Command 0x0F - Description

The Start Continuous Read Tag ID and Data Command instructs the controller to repeatedly attempt to retrieve the tag ID and a specified number of tag data bytes from any tag that enters RF range. This command is similar to Command 0x0D; however, Command 0x0F additionally retrieves the tag's ID number.

This command contains four primary parameters: *Start Address*, *Block Size*, *Start/Stop Flag*, and *Duplicate Read Delay*.

Start/Stop Flag: By setting the single-byte *Start/Stop Flag* parameter to one (*0x01*), continuous read mode will be switched ON upon execution of the command. Setting the parameter value back to zero (*0x00*) and re-issuing the command will turn continuous read mode OFF.


Duplicate Read Delay: The *Duplicate Read Delay* is a single-byte value representing the number of seconds that a tag must remain OUT of RF range before it can be re-read and have its data sent to the host for a second time. It is used to limit or prevent the volume of redundant information that is transmitted while the controller is performing continuous reads. The parameter can have a value of 00 to 60 seconds (0x00 - 0x3C).

For example, when the *Duplicate Read Delay* is set to two (0x02), a tag that has already been read must exit the antenna's RF field for at least two seconds before the controller will recognize it again and re-send its data to the host. When the value is set to zero, the controller will continuously read AND transmit duplicate tag data to the host.

Start Address: The *Start Address* is a 2-byte integer indicating the tag address location where the read operation will begin.

Block Size: The *Block Size* is a 2-byte integer that represents the number of tag data bytes to retrieve, beginning at the specified *Start Address* location.

2

This example places the controller at Node 01 into *Continuous Read Tag ID and Data* mode, retrieves the tag ID number and reads four bytes of data starting at address 0x0001 from any tag within range. The *Duplicate Read Delay* is set for 2 seconds ($0x02 = 2 \times 1$ second increments).

Command from Host (Starting Continuous Read)

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x01
Overall Length of Command (in words)	0x00	0x06
0xAA in MSB, Command ID in LSB: (<i>0x0F</i>)	0xAA	0x0F
0x00 in MSB, Node ID in LSB	0x00	0x01
Start/Stop Flag in MSB (<i>0x01</i> = <i>START, 0x00</i> = <i>STOP</i>) Duplicate Read Delay in LSB (<i>measured in seconds</i>)	0x01	0x02
Start Address	0x00	0x01
Block Size	0x00	0x04

Response from Controller (Continuous Read Evoked)

Parameter Field	MSB	LSB
Overall Length of Response (in words)	0x00	0x0C
0xAA in MSB, Command Echo in LSB	0xAA	0x0F
Instance Counter in MSB, Node ID Echo in LSB	<ic></ic>	0x01
Month and Day Timestamp: (March 19 th)	0x03	0x13
Hour and Minute Timestamp: (10:11: AM)	0x0A	0x0B
Seconds Timestamp in MSB: (:36 seconds)	0x24	0x0C
Additional Data Length in LSB: (12 bytes)		
Tag ID (bytes 1 and 2)	0xE0	0x04
Tag ID (bytes 3 and 4)	0x01	0x00
Tag ID (bytes 5 and 6)	0x00	0x10
Tag ID (bytes 7 and 8)	0x09	0x61
Returned Data (bytes 1 and 2)	0x01	0x02
Returned Data (bytes 3 and 4)	0x03	0x04

To exit out of Continuous Read Tag ID and Data mode, re-issue the command with zero (0x00) in the *Start/Stop Flag* field.

Command from Host (Stopping Continuous Read)

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x01
Overall Length of Command (in words)	0x00	0x06
0xAA in MSB, Command ID in LSB (<i>0x0F</i>)	0xAA	0x0F
0x00 in MSB, Node ID in LSB	0x00	0x01
Start/Stop Flag in MSB (0x01 = START, 0x00 = STOP)	0x00	0x02
Duplicate Read Delay in LSB		
Start Address	0x00	0x01
Block Size (in bytes)	0x00	0x00

Response from Controller (Continuous Read Stopped)

Parameter Field	MSB	LSB
Overall Length of Response (in words)	0x00	0x06
0xAA in MSB, Command Echo in LSB	0xAA	0x0F
Instance Counter in MSB, Node ID Echo in LSB	<ic></ic>	0x01
Month and Day Timestamp: (March 19 th)	0x03	0x13
Hour and Minute Timestamp: (10:11: AM)	0x0A	0x0B
Seconds Timestamp in MSB: (:36 seconds). 0x00 in LSB	0x24	0x00

CBX COMMAND 0X10: GET GATEWAY/HUB SOFTWARE VERSION

Command 0x10 - Description

2

The Get Gateway/Hub Software Version Command is used to retrieve the version number of the firmware code installed on the Gateway/Hub.

Command 0x10 - CBx Example

This example retrieves the software version from an Industrial Hub interface module. The software version retrieved in this example is the 20-byte string: 48 55 42 2D 30 34 2D 49 4E 44 2D 30 31 20 76 31 2E 31 2E 47, which correspond to the ASCII characters: HUB-04-IND-01 v1.1.G.

Command from Host

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x20
Overall Length of Command (in words)	0x00	0x06
0xAA in MSB, Command ID in LSB: (<i>0x10</i>)	0xAA	0x10
0x00 in MSB, Node ID in LSB	0x00	0x20
Not Used (0x00, 0x00)	0x00	0x00
Not Used (0x00, 0x00)	0x00	0x00
Not Used (0x00, 0x00)	0x00	0x00

Response from Gateway/Hub

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x20
Overall Length of Response (in words)	0x00	0x10
0xAA in MSB, Command Echo in LSB	0xAA	0x10
Instance Counter in MSB, Node ID Echo in LSB	<ic></ic>	0x20
Month and Day Timestamp: (March 19 th)	0x03	0x13
Hour and Minute Timestamp: (10:11: AM)	0x0A	0x0B
Seconds Timestamp in MSB: (<i>:36 seconds</i>). Additional Data Length in LSB: (<i>20 bytes</i>)	0x24	0x14
Software Version Character: bytes 1 and 2	0x48 <h></h>	0x55 <u></u>
Software Version Character: bytes 3 and 4	0x42 	0x2D <->
Software Version Character: bytes 5 and 6	0x30 <0>	0x34 <4>
Software Version Character: bytes 7 and 8	0x2D <->	0x49 <l></l>
Software Version Character: bytes 9 and 10	0x4E <n></n>	0x44 <d></d>
Software Version Character: bytes 11 and 12	0x2D <->	0x30 <0>
Software Version Character: bytes 13 and 14	0x31 <1>	0x20 <space></space>
Software Version Character: bytes 15 and 16	0x76 <v></v>	0x31 <1>
Software Version Character: bytes 17 and 18	0x2E <.>	0x31 <1>
Software Version Character: bytes 19 and 20	0x2E <.>	0x47 <g></g>

CBX COMMAND 0X11: GET GATEWAY/HUB NAME

Command 0x11 - Description

The Get Gateway/Hub Name Command is used to retrieve the Gateway/Hub's user-defined ASCII name.

Command 0x11 - CBx Example

This example retrieves the user-defined name from an Industrial Hub interface module. The name retrieved in this example is the 11-byte string: 48 55 42 20 49 4E 44 20 48 55 42, which correspond to the ASCII characters: HUB IND HUB.

Command from Host

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x20
Overall Length of Command (in words)	0x00	0x06
0xAA in MSB, Command ID in LSB: (<i>0x11</i>)	0xAA	0x11
0x00 in MSB, Node ID in LSB	0x00	0x20
Not Used (0x00, 0x00)	0x00	0x00
Not Used (0x00, 0x00)	0x00	0x00
Not Used (0x00, 0x00)	0x00	0x00

Response from Gateway/Hub

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x20
Overall Length of Response (in words)	0x00	0x0C
0xAA in MSB, Command Echo in LSB	0xAA	0x11
Instance Counter in MSB, Node ID Echo in LSB	<ic></ic>	0x20
Month and Day Timestamp: (March 19th)	0x03	0x13
Hour and Minute Timestamp: (10:11: AM)	0x0A	0x0B
Seconds Timestamp in MSB (<i>:36 seconds</i>). Additional Data Length in LSB: (<i>11 bytes</i>)	0x24	0x0B
Hub Name Data Bytes: bytes 1 and 2	0x48 <h></h>	0x55 <u></u>
Hub Name Data Bytes: bytes 3 and 4	0x42 	0x20 <space></space>
Hub Name Data Bytes: bytes 5 and 6	0x49 <l></l>	0x4E <n></n>
Hub Name Data Bytes: bytes 7 and 8	0x44 <d></d>	0x20 <space></space>
Hub Name Data Bytes: bytes 9 and 10	0x48 <h></h>	0x55 <u></u>
Hub Name Data Byte: byte 11 0x00 in LSB	0x42 	0x00

CBX COMMAND 0X12: GET DIPSWITCH SETTINGS

Command 0x12 - Description

2

The *Get Dipswitch Settings Command* is used to retrieve the status of the Gateway/Hub's three main configuration dipswitches.

The resulting response for this command will include a 1-byte value representing the current settings of dipswitches 1-3. Of this one byte, the lowest 3 bits represent the ON/OFF status of dipswitches 1 - 3 (dipswitches 4 - 8 are not applicable and should not be altered).

Command 0x12 - CBx Example

This example retrieves the dipswitch settings from an Industrial Hub interface module.

Command from Host

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x20
Overall Length of Command (in words)	0x00	0x06
0xAA in MSB, Command ID in LSB: (<i>0x12</i>)	0xAA	0x12
0x00 in MSB, Node ID in LSB	0x00	0x20
Not Used (0x00, 0x00)	0x00	0x00
Not Used (0x00, 0x00)	0x00	0x00
Not Used (0x00, 0x00)	0x00	0x00

Response from Gateway/Hub

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x20
Overall Length of Response (in words)	0x00	0x07
0xAA in MSB, Command Echo in LSB	0xAA	0x12
Instance Counter in MSB, Node ID Echo in LSB	<ic></ic>	0x20
Month and Day Timestamp: (March 19 th)	0x03	0x13
Hour and Minute Timestamp: (10:11: AM)	0x0A	0x0B
Seconds Timestamp in MSB: (<i>:36 seconds</i>). Additional Data Length in LSB: (<i>one byte</i>)	0x24	0x01
Dipswitch Settings Value in MSB. 0x00 in LSB	0x03	0x00

The dipswitch settings value "0x03" was retrieved in the above example, meaning that dipswitches 1 and 2 are ON.

Dipswitch Settings Value	Description
0x00	Dipswitches 1-3 are OFF
0x01	Dipswitch 1 is ON
0x02	Dipswitch 2 is ON
0x03	Dipswitch 1 and 2 are ON
0x04	Dipswitch 3 is ON
0x05	Dipswitch 1 and 3 are ON
0x06	Dipswitch 2 and 3 are ON
0x07	All 3 Dipswitches are ON

Table 2-3: Dipswitch Settings Value Definitions

CBX COMMAND 0X13: GET NODE STATUS LIST

Command 0x13 - Description

The Get Node Status List Command is used to retrieve the operational status of the Gateway/Hub's Subnet Nodes. The response will include a list containing a number of individual Node Status Bytes (16 for the Gateway, 4 for the Hub), where each byte indicates the status for the corresponding Node ID.

Command 0x13 – CBx Example

This example retrieves the Node Status List from a Gateway interface module.

Command from Host

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x20
Overall Length of Command (in words)	0x00	0x06
0xAA in MSB. Command ID in LSB: (<i>0x13</i>)	0xAA	0x13
0x00 in MSB, Node ID in LSB	0x00	0x20
Not Used (0x00, 0x00)	0x00	0x00
Not Used (0x00, 0x00)	0x00	0x00
Not Used (0x00, 0x00)	0x00	0x00

Response from Gateway/Hub

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x20
Overall Length of Response (in words)	0x00	0x0E
0xAA in MSB, Command Echo in LSB	0xAA	0x13
Instance Counter in MSB. Node ID Echo in LSB	<ic></ic>	0x20
Month and Day Timestamp: (March 19 th)	0x03	0x13
Hour and Minute Timestamp: (10:11: AM)	0x0A	0x0B
Seconds Timestamp in MSB: (<i>36 seconds</i>). Additional Data Length in LSB: (<i>4 bytes</i>)	0x24	0x04
Status for Node ID 1 and 2	0x04	0x04
Status for Node ID 3 and 4	0x04	0x04
Status for Node ID 5 and 6	0x04	0x04
Status for Node ID 7 and 8	0x04	0x04
Status for Node ID 9 and 10	0x04	0x04
Status for Node ID 11 and 12	0x04	0x04
Status for Node ID 13 and 14	0x04	0x04
Status for Node ID 15 and 16	0x04	0x04

In the above example response, all sixteen nodes report "0x04 - Controller Healthy."

Node Status Byte Definition Table

Node Status Byte	Node Status	Description
0x00	CONTROLLER INACTIVE	No controller has responded to a poll at this Node ID for at least 40 seconds. If a controller does eventually respond at this Node ID, its status will be changed to "0x04 - CONTROLLER HEALTHY"
0x01	CONTROLLER STOPPED RESPONDING	The controller at this Node ID has not responded to a poll in over 10 seconds. If the controller does not respond to a poll within another 30 seconds, its status will be changed to "0x00 - CONTROLLER INACTIVE" If the controller does respond to a poll, its status will be changed back to "0x04 - CONTROLLER HEALTHY"
0x02	CONTROLLER HAS PROBLEM	The controller at this Node ID has missed at least 3 consecutive polls. If the controller does not respond to a poll within another 10 seconds, its status will be changed to "0x01 - CONTROLLER STOPPED RESPONDING" If the controller does respond to a poll, its status will be changed back to "0x04 - CONTROLLER HEALTHY"
0x03	CONTROLLER EXPECTED SOON	This Node Status indicates that a controller is temporarily disconnected or that it is being moved to another Node ID to another. Because a controller is "expected" to appear soon, the Gateway/Hub will poll this Node more frequently than other 'inactive' nodes.
0x04	CONTROLLER HEALTHY	The controller is healthy and responding to polls. However, if the controller misses 3 consecutive polls, its status will be changed to "0x02 - CONTROLLER HAS PROBLEM."
0x05	CONTROLLER DOWNLOADING	This status is only applied to a controller that is currently downloading and installing new firmware to its flash memory. To optimize polling and allow for the fastest possible firmware installation, the Hub will temporarily halt the polling of this node until the controller has finished its installation.

CBX COMMAND 0X14: GET NOTIFICATION MASK

Command 0x14 - Description

The *Get Notification Mask Command* is used to retrieve the user-defined 16-bit "*Notification Mask*" that determines for which events the Gateway/Hub notifies the host PC.

The lowest 13 bits of the Notification Mask identify whether a *Notification Message* is enabled (1 = ON) or disabled (0 = OFF) when a particular *Notification Event* occurs.

For more information regarding the Notification Mask, see Command 0x24: Set Notification Mask.

Command 0x14 - CBx Example

This example retrieves the Notification Mask from an Industrial Hub interface module.

Command from Host

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x20
Overall Length of Command (in words)	0x00	0x06
0xAA in MSB, Command ID in LSB: (0x14)	0xAA	0x14
0x00 in MSB, Node ID in LSB	0x00	0x20
Not Used (0x00, 0x00)	0x00	0x00
Not Used (0x00, 0x00)	0x00	0x00
Not Used (0x00, 0x00)	0x00	0x00

Response from Gateway/Hub

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x20
Overall Length of Response (in words)	0x00	0x07
0xAA in MSB, Command Echo in LSB	0xAA	0x14
Instance Counter in MSB, Node ID Echo in LSB	<ic></ic>	0x20
Month and Day Timestamp: (March 19 th)	0x03	0x13
Hour and Minute Timestamp: (10:11: AM)	0x0A	0x0B
Seconds Timestamp in MSB (:36 seconds).	0x24	0x02
Additional Data Length in LSB: (2 bytes)		
16-bit Notification Mask	0x1F	0xFF

In the above example response, the Notification Mask is 0x1FFF, meaning that all 13 Notification Messages are enabled.

Notification Message Table

The following table lists the 13 Notification Messages, their bit mask values and contains a description of the Notification Event that can be set to trigger the notification.

Bit	Notification Message	Notification Event Description
1	CONTROLLER IS HEALTHY	Sent whenever the status of a controller changes to 'Healthy'
2	CONTROLLER HAS PROBLEM	Sent whenever a controller is marked 'Has Problem'
3	CONTROLLER STOPPED RESPONDING	Sent whenever a controller is marked 'Stopped Responding'
4	CONTROLLER DEACTIVATED	Sent whenever a controller is deactivated (is marked 'Inactive')
5	CONTROLLER MISSED POLL	Sent whenever a controller misses a poll
6	CONTROLLER ADDRESS CONFLICT	Sent whenever the Gateway/Hub detects a Node ID conflict
7	CONTROLLER CONFIGURATION FAILURE	Sent whenever the Gateway/Hub fails to configure a controller
8	TAG PRESENT AT NODE *	Sent whenever a tag is first recognized in the RF field of the specified node
9	TAG NOT PRESENT AT NODE *	Sent whenever a tag is no longer recognized within or has exited the RF field of the specified node
10	INPUT SET (Hub only)	Sent when one of the Hub's four Inputs has been set
11	INPUT CLEARED (Hub only)	Sent when one of the Hub's four Inputs has been cleared
12	OUTPUT SET (Hub only)	Sent when one of the Hub's four Outputs has been set
13	OUTPUT CLEARED (Hub only)	Sent when one of the Hub's four Outputs has been cleared

Table 2-5: Notification Message Table

* - *Tag Presence* must be **enabled** on the RFID controller.

The Gateway only supports Notification Messages 1 – 9. Notification Messages 10 – 13 pertain to the status of the RFID Controller or Hub's Digital Inputs and Outputs.

CBX COMMAND 0X15: GET LAST GATEWAY/HUB ERROR

Command 0x15 - Description

The Get Last Gateway/Hub Error Command is used to retrieve information from the Gateway/Hub regarding the last or most recent error that was experienced by the Gateway/Hub or one of its RFID controllers on the Subnet16 network.

The generated response will include 1-byte values for the error code and the Node ID of the device that experienced the error, and may contain an additional text string of further information ("*Error Details*"). When the Gateway/Hub is power cycled, any stored error information will be deleted.

Command 0x15 - Description

This example retrieves from an Industrial Hub interface module data concerning the most recent error experienced.

Command from Host

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x20
Overall Length of Command (in words)	0x00	0x06
0xAA in MSB, Command ID in LSB: (<i>0x15</i>)	0xAA	0x15
0x00 in MSB, Node ID in LSB	0x00	0x20
Not Used (0x00, 0x00)	0x00	0x00
Not Used (0x00, 0x00)	0x00	0x00
Not Used (0x00, 0x00)	0x00	0x00

Response from Gateway/Hub

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x20
Overall Length of Response (in words)	0x00	0x12
0xAA in MSB, Command Echo in LSB	0xAA	0x15
Instance Counter in MSB, Node ID Echo in LSB	<ic></ic>	0x20
Error Code in MSB. Error Node (device that experienced the error) in LSB	0x8A	0x04
Error Hour and Minute Timestamp: (2:07:PM)	0x0E	0x07
Error Seconds Timestamp in MSB: (<i>:52 seconds</i>). Additional Data Length in LSB: (<i>23 bytes</i>)	0x34	0x17
Error Details Returned Data: bytes 1 and 2	0x53 <s></s>	0x75 <u></u>
Error Details Returned Data: bytes 3 and 4	0x62 	0x6E <n></n>
Error Details Returned Data: bytes 5 and 6	0x65 <e></e>	0x74 <t></t>
Error Details Returned Data: bytes 7 and 8	0x20 <space></space>	0x52 <r></r>
Error Details Returned Data: bytes 9 and 10	0x65 <e></e>	0x73 <s></s>
Error Details Returned Data: bytes 11 and 12	0x70	0x6F <o></o>
Error Details Returned Data: bytes 13 and 14	0x6E <n></n>	0x73 <s></s>
Error Details Returned Data: bytes 15 and 16	0x65 <e></e>	0x20 <space></space>
Error Details Returned Data: bytes 17 and 18	0x54 <t></t>	0x69 <i></i>
Error Details Returned Data: bytes 19 and 20	0x6D <m></m>	0x65 <e></e>
Error Details Returned Data: bytes 21 and 22	0x6F <o></o>	0x75 <u></u>
Error Details Returned Data: byte 23. 0x00 in LSB	0x74 <t></t>	0x00

In the above example response, error code 0x8A was reported on Node ID 04 at 2:07:52 P.M. Error Details = "Subnet Response Timeout."

CBX COMMAND 0X16: GET GATEWAY/HUB TIME

Command 0x16 - Description

The *Get Gateway/Hub Time Command* is used to retrieve the current date and time as set internally on the Gateway/Hub. Date and time are returned in the following format: Year MSB:LSB (2-byte Integer) Month (byte), Day of Month (byte) Hour (byte), Minute (byte) Seconds (byte)

Command 0x16 – CBx Example

This example retrieves the date and time from an Industrial Hub interface module.

Command from Host

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x20
Overall Length of Command (in words)	0x00	0x06
0xAA in MSB, Command ID in LSB: (0x16)	0xAA	0x16
0x00 in MSB, Node ID in LSB	0x00	0x20
Not Used (0x00, 0x00)	0x00	0x00
Not Used (0x00, 0x00)	0x00	0x00
Not Used (0x00, 0x00)	0x00	0x00

Response from Gateway/Hub

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x20
Overall Length of Response (in words)	0x00	0x0A
0xAA in MSB, Command Echo in LSB	0xAA	0x16
Instance Counter in MSB, Node ID Echo in LSB	<ic></ic>	0x20
Month and Day Timestamp: (May 23)	0x05	0x17
Hour and Minute Timestamp: (2:08 PM)	0x0E	0x08
Seconds Timestamp in MSB: (<i>:03 seconds</i>). Additional Data Length in LSB: (7 bytes)	0x03	0x07
Year: (2007)	0x07	0xD7
Month and Day: (May 23)	0x05	0x17
Hours and Minutes: (2:08 P.M)	0x0E	0x08
Seconds in MSB: (:03 seconds). 0x00 in LSB	0x03	0x00

In the above example response, the date and time retrieved is:

2007, May 23, 14:08:03

CBX COMMAND 0X1A: GET DIGITAL INPUTS

Command 0x1A - Description

The *Get Digital Inputs Command* is used to retrieve the 8-bit *Digital Input State* value, which identifies the status of the device's digital input(s). Currently HF and UHF I/O model controllers as well as the Hubs are equipped with one or more Digital Inputs. See the *Digital Input State Table* on the following page for definitions.

Command 0x1A – CBx Example

This example retrieves the status of the four Hub Inputs.

Command from Host

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x20
Overall Length of Command (in words)	0x00	0x06
0xAA in MSB, Command ID in LSB: (0x1A)	0xAA	0x1A
0x00 in MSB, Node ID in LSB	0x00	0x20
Not Used (0x00, 0x00)	0x00	0x00
Not Used (0x00, 0x00)	0x00	0x00
Not Used (0x00, 0x00)	0x00	0x00

Response from Device

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x20
Overall Length of Response (in words)	0x00	0x07
0xAA in MSB, Command Echo in LSB	0xAA	0x1A
Instance Counter in MSB, Node ID Echo in LSB	<ic></ic>	0x20
Month and Day Timestamp: (May 23)	0x05	0x17
Hour and Minute Timestamp: (2:08 PM)	0x0E	0x08
Seconds Timestamp in MSB (<i>:03 seconds</i>). Additional Data Length in LSB: (2 bytes)	0x03	0x02
0x00 in MSB. Digital Input State in LSB: (<i>lowest four bits indicate the state of the Hub's Digital Inputs: 0x0F</i> = all four Hub Inputs are set).	0x00	0x0F

2

Digital Input State Table

LSB	BINARY	ALUE	RESULT
	always zero	<u>Inputs</u>	
		DCBA	
0x0F	0000	1111	all Digital Inputs (hub) = Set
0x04	0000	0100	only Input C (hub) = Set
0x03	0000	0011	only Input A and B (hub) = Set
0x02	0000	0010	only Input B (hub) = Set
0x01	0000	0001	Digital Input 1 (controller) or Input A (hub) = Set Input B, C, D (hub) = Clear
0x00	0000	0000	Digital Input 1 (controller) = Clear all Digital Inputs (hub) = Clear

Table 2-6: Digital Input State

CBX COMMAND 0X1B: GET DIGITAL OUTPUTS

Command 0x1B - Description

The *Get Digital Outputs Command* is used to retrieve the 8-bit *Digital Output State* value, which identifies the status of the device's digital outputs. Currently HF and UHF I/O model controllers as well as the Hubs are equipped with two or more Digital Outputs. See the *Digital Output State Table* on the following page for definitions.

Command 0x1B – CBx Example

This example retrieves the status of the four Hub Outputs.

Command from Host

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x20
Overall Length of Command (in words)	0x00	0x06
0xAA in MSB, Command ID in LSB: (<i>0x1B</i>)	0xAA	0x1B
0x00 in MSB, Node ID in LSB	0x00	0x20
Not Used (0x00, 0x00)	0x00	0x00
Not Used (0x00, 0x00)	0x00	0x00
Not Used (0x00, 0x00)	0x00	0x00

Response from Device

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x20
Overall Length of Response (in words)	0x00	0x07
0xAA in MSB, Command Echo in LSB	0xAA	0x1B
Instance Counter in MSB, Node ID Echo in LSB	<ic></ic>	0x20
Month and Day Timestamp: (May 23)	0x05	0x17
Hour and Minute Timestamp: (2:08 PM)	0x0E	0x08
Seconds Timestamp in MSB (<i>:03 seconds</i>). Additional Data Length in LSB: (2 bytes)	0x03	0x02
0x00 in MSB. Digital Output State in LSB: (<i>lowest four bits indicate the state</i> of the Hub's Digital Outputs: 0x0F = all four Hub Outputs are set).	0x00	0x0F

2

LSB	BINARY VALUE		RESULT
	always zero	<u>Outputs</u>	
		DCBA	
0x0F	0000	1111	all Digital Outputs (hub) = Set
0x04	0000	0100	only Output C (hub) = Set
0x03	0000	0011	Digital Output 1 (controller) or Output A (hub) = Set Digital Output 2 (controller) or Output B (hub) = Set Output C, D (hub) = Clear
0x02	0000	0010	Digital Output 1 (controller) or Output A (hub) = Clear Digital Output 2 (controller) or Output B (hub) = Set Output C, D (hub) = Clear
0x01	0000	0001	Digital Output 1 (controller) or Output A (hub) = Set Digital Output 2 (controller) or Output B (hub) = Clear Output C, D (hub) = Clear
0x00	0000	0000	all Digital Outputs (controller) = Clear all Digital Outputs (hub) = Clear

Digital Output State Table

Table 2-7: Digital Output State

CBX COMMAND 0X1C: GET SUBNET BAUD RATE

Command 0x1C - Description

The *Get Subnet Baud Rate Command* is used to retrieve the baud rate of the Subnet network. The response will contain a one-byte *Baud Rate Index Value* that indicates the current baud rate of the Subnet. See the *Baud Rate Index Table* of the following page for definitions.

Command 0x1C – CBx Example

This example retrieves the baud rate of the Subnet network.

Command from Host

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x20
Overall Length of Command (in words)	0x00	0x06
0xAA in MSB, Command ID in LSB: (<i>0x1C</i>)	0xAA	0x1C
0x00 in MSB, Node ID in LSB	0x00	0x20
Not Used (0x00, 0x00)	0x00	0x00
Not Used (0x00, 0x00)	0x00	0x00
Not Used (0x00, 0x00)	0x00	0x00

Response from Gateway/Hub

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x20
Overall Length of Response (in words)	0x00	0x07
0xAA in MSB, Command Echo in LSB	0xAA	0x1C
Instance Counter in MSB, Node ID Echo in LSB	<ic></ic>	0x20
Month and Day Timestamp: (May 23)	0x05	0x17
Hour and Minute Timestamp: (2:08 PM)	0x0E	0x08
Seconds Timestamp in MSB (:03 seconds).	0x03	0x01
Additional Data Length in LSB: (one byte)		
Baud Rate Index Value in MSB: (0x00 = 9600 baud). 0x00 in LSB	0x00	0x00

Baud Rate Index Table

Baud Rate	Index Value
9600 Baud	0x00
19200 Baud	0x01
38400 Baud	0x02
57600 Baud	0x03
115200 Baud	0x04

Table 2-8: Baud Rate Index

Command 0x21 - Description

2

The Set Gateway/Hub Name Command is used to write to flash memory, a user-defined "friendly" name for the Gateway/Hub. The Gateway/Hub name can contain up to 64 bytes of data.

Command 0x21 - CBx Example

This example sets the user-defined Hub name to DLA IND HUB1.

Command from Host

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x20
Overall Length of Command (in words)	0x00	0x0C (0x06 + number words in Gateway/Hub name)
0xAA in MSB, Command ID in LSB: (0x21)	0xAA	0x21
0x00 in MSB, Node ID in LSB	0x00	0x20
Not Used (0x00, 0x00)	0x00	0x00
Not Used (0x00, 0x00)	0x00	0x00
0x00 in MSB Hub Name Length (in bytes) in LSB: (<i>12 bytes</i>)	0x00	0x0C
Hub Name Data (ASCII characters 1 & 2)	0x44 <d></d>	0x4C <l></l>
Hub Name Data (ASCII characters 3 & 4)	0x41 <a>	0x20 <space></space>
Hub Name Data (ASCII characters 5 & 6)	0x49 <l></l>	0x4E <n></n>
Hub Name Data (ASCII characters 7 & 8)	0x44 <d></d>	0x20 <space></space>
Hub Name Data (ASCII characters 9 & 10)	0x48 <h></h>	0x55 <u></u>
Hub Name Data (ASCII characters 11 & 12)	0x42 	0x31 <1>

Response from Gateway/Hub

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x20
Overall Length of Response (in words)	0x00	0x06
0xAA in MSB, Command Echo in LSB	0xAA	0x21
Instance Counter in MSB, Node ID Echo in LSB	<ic></ic>	0x20
Month and Day Timestamp: (March 19 th)	0x03	0x13
Hour and Minute Timestamp: (10:11: AM)	0x0A	0x0B
Seconds Timestamp in MSB: (:36 seconds). 0x00 in LSB	0x24	0x00

CBX COMMAND 0X24: SET NOTIFICATION MASK

Command 0x24 - Description

The Set Notification Mask Command is used to modify and save changes to the Gateway/Hub's 16-bit Notification Mask. Stored in flash memory, the user-defined Notification Mask determines for which events the Gateway/Hub sends a Notification Message to the host.

Notification Messages are small host-bound informational packets of data that are issued by a Gateway/Hub when a specified *Notification Event* occurs within the Gateway/Hub or on the Subnet16[™] network.

The Gateway/Hub stores 9 different Notification Messages internally. The Hub stores an additional 4 Notification Messages relative to its Inputs/Outputs. See the Notification Message Table below.

Notification Message Table

The following table lists the Notification Messages, their bit mask values and contains a description of the Notification Event that can be set to trigger the notification.

Bit	Notification Message	Notification Event Description
1	CONTROLLER IS HEALTHY	Sent whenever the status of a controller changes to 'Healthy'
2	CONTROLLER HAS PROBLEM	Sent whenever a controller is marked 'Has Problem'
3	CONTROLLER STOPPED RESPONDING	Sent whenever a controller is marked 'Stopped Responding'
4	CONTROLLER DEACTIVATED	Sent whenever a controller is deactivated (is marked 'Inactive')
5	CONTROLLER MISSED POLL	Sent whenever a controller misses a poll
6	CONTROLLER ADDRESS CONFLICT	Sent whenever the Gateway/Hub detects a Node ID conflict
7	CONTROLLER CONFIGURATION FAILURE	Sent whenever the Gateway/Hub fails to configure a controller
8	TAG PRESENT AT NODE *	Sent whenever a tag is first recognized in the RF field of the specified node
9	TAG NOT PRESENT AT NODE *	Sent whenever a tag is no longer recognized within or has exited the RF field of the specified node
10	INPUT SET (Hub only)	Sent when one of the Hub's four Inputs has been set
11	INPUT CLEARED (Hub only) Sent when one of the Hub's four Inputs has cleared	
12	OUTPUT SET (Hub only)	Sent when one of the Hub's four Outputs has been set
13	OUTPUT CLEARED (Hub only)	Sent when one of the Hub's four Outputs has been cleared

Table 2-9: Notification Message Table

* - *Tag Presence* must be **enabled** on the RFID controller.

The Gateway only supports Notification Messages 1 - 9. Notification Messages 10 - 13 pertain to the status of the Hub's Digital Inputs and Outputs.

Notification Messages are enabled or disabled by setting the corresponding bit within the 16bit Notification Mask. Bits 01 through 13 each represent one of the Notification Messages. A bit is either set to "1" (ON = enabled) or "0" (OFF = disabled). If a bit is turned ON, the corresponding Notification Message will be generated when the specified event occurs. See par. 1.4 for details on Notification Event Messages.

By default, all Notification Messages are enabled (i.e. the 16-bit Notification Mask is 0x1FFF).

16-bit Notification Mask - Binary Representation - when enabling all 13 Notification Messages:

 $\frac{(0\ 0\ 0\ 1}{[Bit\ 16\ -\ -Bit\ 09]} \frac{(1\ 1\ 1\ 1}{[Bit\ 08\ -\ -Bit\ 01]} = \frac{0x1FFF}{0x1FFF}$

To disable all 13 Notification Messages, set the Notification Mask to 0x0000.

Command 0x24 - CBx Example

This example sets the user-defined Notification Mask to 0x1FFF, which enables all 13 Notification Messages.

Command from Host

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x20
Overall Length of Command (in words)	0x00	0x07
0xAA in MSB, Command ID in LSB: (0x24)	0xAA	0x24
0x00 in MSB, Node ID in LSB	0x00	0x20
Not Used (0x00, 0x00)	0x00	0x00
Not Used (0x00, 0x00)	0x00	0x00
0x00 in MSB. Notification Mask Length in LSB: (2 bytes)	0x00	0x02
16-bit Notification Mask	0x1F	0xFF

Response from Gateway/Hub

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x20
Overall Length of Response (in words)	0x00	0x06
0xAA in MSB, Command Echo in LSB	0xAA	0x24
Instance Counter in MSB, Node ID Echo in LSB	<ic></ic>	0x20
Month and Day Timestamp: (March 19 th)	0x03	0x13
Hour and Minute Timestamp: (10:11: AM)	0x0A	0x0B
Seconds Timestamp in MSB: (:36 seconds). 0x00 in LSB:	0x24	0x00

CBX COMMAND 0X26: SET GATEWAY/HUB TIME

Command 0x26 - Description

The Set Gateway/Hub Time Command is used to set the Gateway/Hub's internal clock and calendar. Date and time are specified in the following format: Year MSB:LSB (2-byte Integer) Month (byte), Day of Month (byte) Hour (byte), Minute (byte) Seconds (byte)

Command 0x26 - CBx Example

This example sets the date and time of the Hub to that of the host PC, which, in this example, is 2007, May 23, 3:19:44 PM.

Command from Host

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x20
Overall Length of Command (in words)	0x00	0x0A
0xAA in MSB, Command ID in LSB: (0x26)	0xAA	0x26
0x00 in MSB, Node ID in LSB	0x00	0x20
Not Used (0x00, 0x00)	0x00	0x00
Not Used (0x00, 0x00)	0x00	0x00
0x00 in MSB	0x00	0x07
Time/Date Data Length in LSB: (7 bytes)		
Year: (2007)	0x07	0xD7
Month and Day: (May 23)	0x05	0x17
Hour and Minute: (3:19 PM)	0x0F	0x13
Seconds in MSB: (:44 seconds). 0x00 in LSB	0x2C	0x00

Response from Gateway/Hub

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x20
Overall Length of Response (in words)	0x00	0x06
0xAA in MSB, Command Echo in LSB	0xAA	0x26
Instance Counter in MSB, Node ID Echo in LSB	<ic></ic>	0x20
Month and Day Timestamp: (May 23 ^h)	0x05	0x17
Hour and Minute Timestamp: (03:19: P.M.)	0x0F	0x13
Seconds Timestamp in MSB: (:44 seconds). 0x00 in LSB	0x2C	0x07

Command 0x2A - Description

2

The Set/Clear Digital Outputs Command is used to set or clear any or all of the device's digital outputs.

The 8-bit *Digital Output Mask* is used to select which of the Digital Outputs you wish to affect (i.e., which Digital Outputs will be set or cleared).

The 8-bit *Data State* is used to indicate whether the affected Digital Outputs will either be set (1 = SET) or cleared (0 = CLEAR).

Currently HF and UHF I/O model controllers as well as the Hubs are equipped with two or more Digital Outputs.

For a Hub, only the lowest four bits are used (one bit for each Digital Output, where the lowest bit = Output A, the next highest bit = Output B, etc).

For a controller, only the lowest two bits are used (one bit for each Digital Output, where the lowest bit = Output 1, the next highest bit = Output 2).

Command 0x2A – CBx Example

This example sets outputs A, B, C and D on an Industrial Hub interface module.

Command from Host

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x20
Overall Length of Command (in words)	0x00	0x08
0xAA in MSB, Command ID in LSB: (0x2A)	0xAA	0x2A
0x00 in MSB, Node ID in LSB	0x00	0x20
Not Used (0x00, 0x00)	0x00	0x00
Not Used (0x00, 0x00)	0x00	0x00
0x00 in MSB. Additional Data Length in LSB (<i>4 bytes</i>)	0x00	0x04
0x00 in MSB. Digital Output Mask (indicates which Digital Output states will be affected) in LSB	0x00	0x0F
0x00 in MSB. Data State (indicates state to set affected Digital Outputs) in LSB	0x00	0x0F

Response from Device

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x20
Overall Length of Response (in words)	0x00	0x06
0xAA in MSB, Command Echo in LSB	0xAA	0x2A
Instance Counter in MSB, Node ID Echo in LSB	<ic></ic>	0x20

Parameter Field	MSB	LSB
Month and Day Timestamp: (May 23)	0x05	0x17
Hour and Minute Timestamp: (2:08 PM)	0x0E	0x08
Seconds Timestamp in MSB (<i>:03 seconds</i>). 0x00 in LSB	0x03	0x00

Additional Output Mask / Data State Examples:

Example 2:

Clear all outputs (hub) A, B, C, D

LSB HEX VALUE		BINARY VAL	UE	RESULT
		always zero	<u>Outputs</u>	
			DCBA	
Output Mask	0x0F	0000	1111	Affect all Digital Outputs
Data State	0x00	0000	0000	Clear all Outputs

Example 3:

Set outputs A and D, but leave B and C alone

LSB HEX VALUE		BINARY VAL	.UE	RESULT
		always zero	<u>Outputs</u>	
			DCBA	
Output Mask	0x09	0000	1001	Affect outputs A and D
Data State	0x09	0000	1001	Set outputs A and D

Example 4:

Set outputs A and B, Clear output D, but leave output C alone

LSB HEX VALUE		BINARY VAL	UE	RESULT
		always zero	<u>Outputs</u>	
			DCBA	
Output Mask	0x0B	0000	1011	Affect outputs A, B and D
Data State	0x03	0000	0011	Set outputs A and B, clears output D

Example 5:

If a bit in the Data State is set, yet the corresponding bit in the Output Mask is not set, it will be ignored, as in the following example.

LSB HEX VALUE		BINARY VALUE		RESULT
		always zero	<u>Outputs</u>	
			DCBA	
Output Mask	0x01	0000	0001	Affect output A (hub) or output 1 (controller)
Data State	0x0F	0000	1111	Set output A or 1, other bits are ignored

CBX COMMAND 0X2C: SET SUBNET BAUD RATE

Command 0x2C - Description

2

The Set Subnet Baud Rate Command is used to modify and store changes to the Subnet network baud rate. The default Subnet baud rate is 9600.

Command 0x2C – CBx Example

This example sets the Subnet baud rate to 115200.

Command from Host

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x20
Overall Length of Command (in words)	0x00	0x06
0xAA in MSB, Command ID in LSB: (<i>0x2C</i>)	0xAA	0x2C
0x00 in MSB, Node ID in LSB	0x00	0x20
Baud Rate Index Value in MSB 0x00 in LSB	0x04	0x00
Not Used (0x00, 0x00)	0x00	0x00
Not Used (0x00, 0x00)	0x00	0x00

Baud Rate Index Table

Baud Rate	Index Value
9600 Baud	0x00
19200 Baud	0x01
38400 Baud	0x02
57600 Baud	0x03
115200 Baud	0x04

Response from Gateway/Hub

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x20
Overall Length of Response (in words)	0x00	0x06
0xAA in MSB, Command Echo in LSB	0xAA	0x2C
Instance Counter in MSB, Node ID Echo in LSB	<ic></ic>	0x20
Month and Day Timestamp: (May 23)	0x05	0x17
Hour and Minute Timestamp: (2:08 PM)	0x0E	0x08
Seconds Timestamp in MSB (:03 seconds). 0x00 in LSB	0x03	0x00

CBX COMMAND 0X30: GET CONTROLLER NAME

Command 0x30 - Description

The Get Controller Name Command is used to retrieve the user-defined name from a specified controller.

Command 0x30 - CBx Example

This example retrieves the user-defined name "COBALT" from the controller at Node 01.

Command from Host

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x01
Overall Length of Command (in words)	0x00	0x06
0xAA in MSB, Command ID in LSB: (<i>0x30</i>)	0xAA	0x30
0x00 in MSB, Node ID in LSB	0x00	0x01
Not Used (default: 0x00, 0x00)	0x00	0x00
Not Used (default: 0x00, 0x00)	0x00	0x00
Not Used (default: 0x00, 0x00)	0x00	0x00

Response from Controller

Parameter Field	MSB	LSB
Overall Length of Response (in words)	0x00	0x09
0xAA in MSB, Command Echo in LSB	0xAA	0x30
Instance Counter in MSB, Node ID Echo in LSB	<ic></ic>	0x01
Month and Day Timestamp: (March 19 th)	0x03	0x13
Hour and Minute Timestamp: (10:11: AM)	0x0A	0x0B
Seconds Timestamp in MSB: (<i>:36 seconds</i>). Additional Data Length in LSB: (<i>6 bytes</i>)	0x24	0x06
Controller Name Data (ASCII characters 1 & 2)	0x43 <c></c>	0x4F <o></o>
Controller Name Data (ASCII characters 3 & 4)	0x42 	0x41 <a>
Controller Name Data (ASCII characters 5 & 6)	0x4C <l></l>	0x54 <t></t>

CBX COMMAND 0X33: GET CONTROLLER CONFIGURATION

Command 0x33 - Description

2

The *Get Controller Configuration Command* is used to retrieve the configuration settings stored in the controller's flash memory.

Command 0x33 - CBx Example

This example retrieves the stored configuration settings from the controller at Node 01.

Command from Host

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x01
Overall Length of Command (in words)	0x00	0x06
0xAA in MSB. Command ID in LSB: (<i>0x33</i>)	0xAA	0x33
0x00 in MSB. Node ID in LSB	0x00	0x01
Not Used (default: 0x00, 0x00)	0x00	0x00
Not Used (default: 0x00, 0x00)	0x00	0x00
Not Used (default: 0x00, 0x00)	0x00	0x00

Response from Controller

Parameter Field	MSB	LSB
Overall Length of Response (in words)	0x00	0x10
0xAA in MSB. Command Echo in LSB	0xAA	0x33
Instance Counter in MSB. Node ID Echo in LSB	<ic></ic>	0x01
Month and Day Timestamp: (March 19 th)	0x03	0x13
Hour and Minute Timestamp: (10:11: AM)	0x0A	0x0B
Seconds Timestamp in MSB (:36 seconds) Additional Data Length (19 bytes)	0x24	0x13
Continuous Read at Power-up - Start Address (When performing a Continuous Read at power-up or reset, this 2-byte value indicates the starting tag address for the read (0x0000 = begin reading at first available byte).	0x00	0x00
Continuous Read at Power-up - Block Size (When performing a Continuous Read at power-up or reset, this 2-byte value indicates the number of continuous bytes to be read. If this value is zero, the controller will not enter Continuous Read mode at power-up or reset. Default is zero 0x0000).	0x00	0x00

Continuous Read at Power-up - Duplicate Read Delay in MSB (This single-byte value indicates the number of seconds that a tag must remain out of the RF field before it will be read and have its data sent to the host again. Only used when Continuous Read at power-up is enabled). 0x00 0x01 Node ID in LSB (For -485 models only, this single-byte value indicates the controller's Node ID number, between 01–16, for all other controllers. the default = one, 0x01) 0x00 0x00 0x00 Reserved in MSB (0x00). Reserved in LSB (0x00) 0x00 0x01 0x00 0x00 X03 = BIS M-10.7_ (ISO 15693, I-CODE SLI) 0x03 = BIS M-10.7_ (ISO 15693) 0x16 0x01 0x00 0x04 in LSB (0x00) Communication Mode in MSB (See Communications Mode Table below) 0xA0 0xA0 0x00 0ptions Byte 1 in LSB (Default = 0x00) 0ptions Byte 1 in LSB (Default = 0x00) 0ptions Byte 1 in LSB (Default = 0x00) 0xA0 0x00 0ptions Byte 2 in LSB (Default = 0x00) 0ptions Byte 2 in LSB (Default = 0x00) 0ptions Byte 2 in LSB (Default = 0x00) 0x00 0x00 0x00 0ptions Byte 2 in LSB (Default = 0x00) 0ptions Byte 2 in LSB (Default = 0x00) 0x00 0x	Parameter Field	MSB	LSB	
(This single-byte value indicates the number of seconds that a tag must remain out of the RF field before it will be read and have its data sent to the host again. Only used when Continuous Read at power-up is enabled). Image: Control of the RF field before it will be read and have its data sent to the host again. Only used when Continuous Read at power-up is enabled). Node ID in LSB (For -485 models only, this single-byte value indicates the controller's Node ID number, between 01–16, for all other controllers, the default = one, 0x01) 0x00 0x00 Reserved in MSB (0x00). Reserved in LSB (0x00) 0x00 0x00 0x00 Single-byte value indicates tag IC in use: 0x01 0x01 0x00 0x01 = BIS M-10.3_ (ISO 15693, I-CODE SLI) 0x33 = BIS M-10.7_ (ISO 15693) 0x61 0xA0 0x05 = BIS M-10.2_ (ISO 15693) (Tag Type is ignored by BIS U-62) 0xA0 0xA0 0x00 Communication Mode in MSB (See Communications Mode Table below) 0thins Byte 1 in LSB (Default = 0x00) 0ptions Byte 1 in LSB (Default = 0x00) 0ptions Byte 1 in LSB (Default = 0x00) 0xA0 0x00 Options Byte 1 in MSB (Default = 0x00) 0ptions Byte 2 in LSB (Default = 0x00) 0x00 0x00 0x00 Options Byte 2 in LSB (Default = 0x00) 0ptions Byte 2 in LSB (Default = 0x00) 0ptions Byte 2 in LSB (Default = 0x00) 0x00 0x00 0x00 0x00				
must remain out of the RF field before it will be read and have its data sent to the host again. Only used when Continuous Read at power-up is enabled). Node ID in LSB (For -485 models only, this single-byte value indicates the controller's Node ID number, between 01–16, for all other controllers, the default = one, 0x01) Reserved in MSB (0x00). Reserved in LSB (0x00) 0x00 0x00 Tag Type in MSB 0x01 0x01 0x00 Single-byte value indicates tag IC in use: 0x01 0x01 0x00 Single-byte value indicates tag IC in use: 0x01 0x00 0x00 Single-byte value indicates tag IC in use: 0x01 0x00 0x00 Single-byte value indicates tag IC in use: 0x01 0x00 0x00 Single-byte value indicates tag IC in use: 0x01 0x00 0x00 0x01 = BIS M-107_ (ISO 15693) 0x1 0x00 0x00 0x05 = BIS M-110_ (Mifare) 0x00 0xA0 0xA0 Options Byte 1 Table 0 Tag IDS - LSB First 0 0 xA0 0x00 Options Byte 1 Table 0 Tag IDS in Continuous Read 6 1 Reserved 0 1 Reserved 0 x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00		0X00	0/101	
power-up is enabled). Node ID in LSB (For -485 models only, this single-byte value indicates the controller's Node ID number, between 01–16, for all other controllers, the default = one, 0x01) Reserved in MSB (0x00). Reserved in LSB (0x00) 0x00 0x00 Tag Type in MSB Single-byte value indicates tag IC in use: 0x01 = BIS M-103_ (ISO 15693, I-CODE SLI) 0x03 = BIS M-107_ (ISO 15693) 0x05 = BIS M-102_ (ISO 15693) 0x06 = BIS M-102_ (ISO 15693) 0x06 = BIS M-102_ (ISO 15693) 0x07 (Iag Type is ignored by BIS U-62) Reserved in LSB (0x00) Communication Mode in MSB (See Communications Mode Table below) Options Byte 1 in LSB (Default = 0x00) Options Byte 1 in LSB (Default = 0x00) Options Byte 1 Table BIT Description 0 Tag IDS = LSB First 1 Reserved 2 Reserved 3 Reserved 4 Reserved 5 Tag IDS in Continuous Read 6 Tag Presence ON 7 Toggle RF Reserved in MSB (Default = 0x00) Options Byte 2 in LSB (Default = 0x00) Options Byte 2 Table BIT Description 0 4-Byte Tag IDS (Mifare) 1 Legacy Error Codes 2 Reserved 3 Reserved 4 Reserved 5 Reserved 5 Reserved 5 Reserved 6 Reserved 7 Reserved 7 Reserved 7 Reserved				
power-up is enabled). Node ID in LSB (For -485 models only, this single-byte value indicates the controller's Node ID number, between 01–16, for all other controllers, the default = one, 0x01) Reserved in MSB (0x00). Reserved in LSB (0x00) 0x00 0x00 Tag Type in MSB Single-byte value indicates tag IC in use: 0x01 = BIS M-103_ (ISO 15693, I-CODE SLI) 0x03 = BIS M-107_ (ISO 15693) 0x05 = BIS M-102_ (ISO 15693) 0x06 = BIS M-102_ (ISO 15693) 0x06 = BIS M-102_ (ISO 15693) 0x07 (Iag Type is ignored by BIS U-62) Reserved in LSB (0x00) Communication Mode in MSB (See Communications Mode Table below) Options Byte 1 in LSB (Default = 0x00) Options Byte 1 in LSB (Default = 0x00) Options Byte 1 Table BIT Description 0 Tag IDS = LSB First 1 Reserved 2 Reserved 3 Reserved 4 Reserved 5 Tag IDS in Continuous Read 6 Tag Presence ON 7 Toggle RF Reserved in MSB (Default = 0x00) Options Byte 2 in LSB (Default = 0x00) Options Byte 2 Table BIT Description 0 4-Byte Tag IDS (Mifare) 1 Legacy Error Codes 2 Reserved 3 Reserved 4 Reserved 5 Reserved 5 Reserved 5 Reserved 6 Reserved 7 Reserved 7 Reserved 7 Reserved	data sent to the host again. Only used when Continuous Read at			
indicates the controller's Node ID number, between 01–16, for all other controllers, the default = one, 0x01) Reserved in MSB (0x00). Reserved in LSB (0x00) 0x00 0x00 Tag Type in MSB 0x01 = 0x00 0x01 0x00 Single-byte value indicates tag IC in use: 0x01 = 0x01 0x01 0x00 0x05 = BIS M-103_ (ISO 15693) 0x05 = 0x01 0x01 0x00 0x06 = BIS M-110_ (Mifare) 0x00 0x00 0x00 0x06 = BIS M-102_ (ISO 15693) 0x00 0x00 0x00 Communication Mode in MSB (See Communications Mode Table below) 0xA0 0x00 0x00 Options Byte 1 in LSB (Default = 0x00) 0ptions Byte 1 Table 0 Tag IDs - LSB First 1 Reserved 0 0x1 0x00 0 Tag IDs - LSB First 1 Reserved 1 Reserved 3 Reserved 4 Reserved 5 Tag IDs in Continuous Read 0 0x00 0x00 0 Tag IDs - LSB First 1 Reserved in MSB (Default = 0x00) 0x00 0x00 0x00 0x00 0x00 0ptions Byte 2 trable Imt Description 0 0x00 0x00 0x00 0x00 0ptions Byte 2 table				
other controllers, the default = one, 0x01) 0x00 0x00 Reserved in MSB (0x00). Reserved in LSB (0x00) 0x00 0x00 0x00 Single-byte value indicates tag IC in use: 0x01 0x01 0x00 Single-byte value indicates tag IC in use: 0x01 0x01 0x00 0x01 = BIS M-103_ (ISO 15693, I-CODE SLI) 0x05 = BIS M-102_ (ISO 15693) 0x06 0x06 0x00 0x06 = BIS M-102_ (ISO 15693) (Tag Type is ignored by BIS U-62) 0x00 0xA0 0x00 Reserved in LSB (0x00) Communication Mode in MSB (See Communications Mode Table below) 0xA0 0xA0 0x00 Options Byte 1 in LSB (Default = 0x00) Options Byte 1 in LSB (Default = 0x00) 0x00 0x00 0x00 Options Byte 2 in LSB (Default = 0x00) 0x00 0x00 0x00 0x00 0x00 Options Byte 2 in LSB (Default = 0x00) 0x00				
Reserved in MSB (0x00). Reserved in LSB (0x00) 0x00 0x00 Tag Type in MSB 0x01 0x01 0x00 Single-byte value indicates tag IC in use: 0x01 0x01 0x00 0x03 = BIS M-103_ (ISO 15693, I-CODE SLI) 0x05 = BIS M-107_ (ISO 15693) 0x06 0x03 0x05 = BIS M-102_ (ISO 15693) 0x06 0x00 0x00 Communication Mode in MSB (See Communications Mode Table below) 0xA0 0x00 Options Byte 1 in LSB (Default = 0x00) 0ptions Byte 1 in LSB (Default = 0x00) 0x00 0x00 Options Byte 1 in LSB (Default = 0x00) 0 Tag IDs - LSB First 1 Reserved 3 Reserved 1 Reserved 3 Reserved 5 Tag IDs in Continuous Read 0x00 0x00 Options Byte 2 in LSB (Default = 0x00) 0ptions Byte 2 in LSB (Default = 0x00) 0x00 0x00 0x00 Options Byte 2 in LSB (Default = 0x00) 0ptions Byte 2 in LSB (Default = 0x00) 0x00 0x00 0x00 Options Byte 2 in LSB (Default = 0x00) 0ptions Byte 2 Table 0x00 0x00 0x00 Image: Description 0 4-Byte Tag IDs (Mifare) 0x00 0x00 </td <td>indicates the controller's Node ID number, between 01-16, for all</td> <td></td> <td></td>	indicates the controller's Node ID number, between 01-16, for all			
Tag Type in MSB 0x01 0x00 Single-byte value indicates tag IC in use: 0x01 0x00 0x01 = BIS M-103_ (ISO 15693) ICODE SLI) 0x05 0x05 = BIS M-102_ (ISO 15693) 0x06 0x00 0x06 = BIS M-102_ (ISO 15693) 0x00 0x00 Communication Mode in MSB (See Communications Mode Table below) 0xA0 0x00 Options Byte 1 in LSB (Default = 0x00) 0ptions Byte 1 Table 0x7 Tag IDs - LSB First 0x8 Reserved 1 Reserved 3 Reserved 0x00 0x00 0 Tag IDs - LSB First 1 Reserved 0x00 0x00 0 Tag IDs - LSB First 1 Reserved 0x00 0x00 0 Tag IDs - LSB First 1 Reserved 0x00 0x00 0 Tag IDs - LSB First 1 Reserved 0x00 0x00 0 Tag IDs - Continuous Read 6 Tag Presence ON 0x00 0x00 0ptions Byte 2 in LSB (Default = 0x00) 0ptions Byte 2 Table 0x00 0x00 0x00 0ptions Byte 2 Table 1 Legacy Error Codes <	other controllers, the default = one, 0x01)			
Single-byte value indicates tag IC in use: 0x01 = BIS M-103_ (ISO 15693, I-CODE SLI) 0x03 = BIS M-107_ (ISO 15693) 0x05 = BIS M-102_ (ISO 15693) (Tag Type is ignored by BIS U-62) Reserved in LSB (0x00) Communication Mode in MSB (See Communications Mode Table below) Options Byte 1 in LSB (Default = 0x00) Options Byte 1 in LSB (Default = 0x00) Options Byte 1 Table BIT Description 0 Tag IDs - LSB First 1 Reserved 2 Reserved 3 Reserved 4 Reserved 5 Tag IDs in Continuous Read 6 Tag Presence ON 7 Toggle RF Reserved in LSB (Default = 0x00) Options Byte 2 in LSB (Default = 0x00) Options Byte 2 Table BIT Description 0 4-Byte Tag IDs (Mifare) 1 Legacy Error Codes 2 Reserved 3 Reserved 4 Reserved 5 Reserved 3 Reserved 4 Reserved 6 Reserved 5 Reserved 7 Reserved 9 Areserved 9 Are	Reserved in MSB (0x00). Reserved in LSB (0x00)	0x00	0x00	
0x01 = BIS M-103_ (ISO 15693, I-CODE SLI) 0x03 = BIS M-107_ (ISO 15693) 0x05 = BIS M-107_ (ISO 15693) 0x06 = BIS M-102_ (ISO 15693) 0x06 = BIS M-102_ (ISO 15693) 0x00 (Tag Type is ignored by BIS U-62) Reserved in LSB (0x00) Communication Mode in MSB (See Communications Mode Table below) 0xA0 0x00 Options Byte 1 in LSB (Default = 0x00) 0ptions Byte 1 Table 0 Tag IDs - LSB First 1 Reserved 2 Reserved 2 Reserved 2 Reserved 3 Reserved 5 Tag IDs - LSB First 0 1 Reserved 5 Tag IDs - ISB First 0 0x00 0x00 0 Tag IDs - LSB First 1 Reserved 0x00 0x00 2 Reserved 5 Tag IDs in Continuous Read 0 0x00 0x00 0 Tag IDs in Continuous Read 0 -Tag IDs IDS in Continuous Read 0x00 0x00 0x00 0ptions Byte 2 in LSB (Default = 0x00) 0 0x00 0x	Tag Type in MSB	0x01	0x00	
0x03 = BIS M-107_ (ISO 15693) 0x05 = BIS M-102_ (ISO 15693) (Tag Type is ignored by BIS U-62) Reserved in LSB (0x00) Communication Mode in MSB (See <i>Communications Mode Table</i> below) Options Byte 1 in LSB (Default = 0x00) <i>Options Byte 1 Table</i> BIT Description 0 Tag IDs – LSB First 1 Reserved 2 Reserved 3 Reserved 4 Reserved 5 Tag IDs in Continuous Read 6 Tag Presence ON 7 Toggle RF Reserved in LSB (Default = 0x00) <i>Options Byte 2 Table</i> BIT Description 0 4-Byte Tag IDS (Mifare) 1 Legacy Error Codes 2 Reserved 3 Reserved 4 Reserved 5 Reserved 6 Reserved 5 Reserved 1 Legacy Error Codes 2 Reserved 3 Reserved 4 Reserved 5 Reserved 5 Reserved 5 Reserved 6 Reserved 5 Reserved 5 Reserved 5 Reserved 5 Reserved 6 Reserved 5 Reserved 6 Reserved 7	Single-byte value indicates tag IC in use:			
0x05 = BIS M-110_ (Mifare) 0x06 BIS M-102_ (ISO 15693) (Tag Type is ignored by BIS U-62) Reserved in LSB (0x00) 0xA0 0xA0 Communication Mode in MSB (See Communications Mode Table below) 0xA0 0xA0 0x00 Options Byte 1 in LSB (Default = 0x00) 0ptions Byte 1 Table 0 Tag IDs - LSB First 0xA0 0xA0 0 Tag IDs - LSB First 1 Reserved 0xA0 0x00 2 Reserved 3 Reserved 0xA0 0x00 3 Reserved 3 Reserved 0xA0 0x00 4 Reserved 5 Tag IDs in Continuous Read 0xA0 0x00 6 Tag Presence ON 7 Toggle RF 0x00 0x00 Reserved in MSB (Default = 0x00) 0x00 0x00 0x00 Options Byte 2 in LSB (Default = 0x00) 0x00 0x00 0x00 0x00 0x00 Options Byte 2 Table Image: Communication A-Byte Tag IDs (Mifare) 1 Legacy Error Codes 2 Reserved 3 Reserved 5 Reserved 5 5 6 Reserved				
0x06 = BIS M-102_ (ISO 15693) (Tag Type is ignored by BIS U-62) Reserved in LSB (0x00) Communication Mode in MSB (See Communications Mode Table below) Options Byte 1 in LSB (Default = 0x00) Options Byte 1 Table BIT Description 0 Tag IDs - LSB First 1 Reserved 2 Reserved 3 Reserved 4 Reserved 5 Tag IDs in Continuous Read 6 Tag Presence ON 7 Toggle RF Reserved in MSB (Default = 0x00) Options Byte 2 in LSB (Default = 0x00) Options Byte 2 Table BIT Description 0 4-Byte Tag IDs (Mifare) 1 Legacy Error Codes 2 Reserved 3 Reserved 4 Reserved 5 Reserved 6 Reserved 6 Reserved 9 Value 1 (Solution 1) 0 Value 1)				
(Tag Type is ignored by BIS U-62) Reserved in LSB (0x00) 0xA0 0xA0 Communication Mode in MSB (See Communications Mode Table below) 0xA0 0xA0 0x00 Options Byte 1 in LSB (Default = 0x00) 0ptions Byte 1 Table 0 Tag IDS - LSB First 0 Tag IDS - LSB First 1 Reserved 2 Reserved 3 Reserved 3 Reserved 5 Tag IDS in Continuous Read 6 Tag Presence ON 7 Toggle RF 0x00 0x00 0x00 Reserved in MSB (Default = 0x00) 0x00 0x00 0x00 0x00 0x00 0x00 0x00 Options Byte 2 in LSB (Default = 0x00) 0x00 0x00 <t< td=""><td></td><td></td><td></td></t<>				
Reserved in LSB (0x00) Communication Mode in MSB (See Communications Mode Table below) Options Byte 1 in LSB (Default = 0x00) Options Byte 1 Table BIT Description 0 Tag IDs – LSB First 1 1 Reserved 2 2 Reserved 2 3 Reserved 2 4 Reserved 3 5 Tag IDs in Continuous Read 6 6 Tag Presence ON 7 7 Toggle RF 0x00 Ox00 Options Byte 2 in LSB (Default = 0x00) Options Byte 2 Table 0 4-Byte Tag IDs (Mifare) 1 Legacy Error Codes 2 2 Reserved 4 3 Reserved 4 4 Reserved 5 3 Reserved 6 4 Reserved 6 5 Reserved 6 6 Reserved 6 6 Reserved 6 7 Reserved 6 </td <td></td> <td></td> <td></td>				
Communication Mode in MSB (See Communications Mode Table below) Options Byte 1 in LSB (Default = 0x00) Options Byte 1 Table BIT Description 0 Tag IDs - LSB First 1 1 Reserved 3 2 Reserved 3 3 Reserved 3 4 Reserved 5 5 Tag IDs in Continuous Read 6 6 Tag Presence ON 7 7 Toggle RF 0x00) Options Byte 2 in LSB (Default = 0x00) 0x00 Options Byte 2 in LSB (Default = 0x00) 0x00 Options Byte 2 in LSB (Default = 0x00) 0x00 Options Byte 2 in LSB (Default = 0x00) 0x00 Options Byte 2 in LSB (Default = 0x00) 0x00 Options Byte 2 rable 1 BIT Description 0 4-Byte Tag IDs (Mifare) 1 Legacy Error Codes 2 Reserved 3 Reserved 4 Reserved 5 Reserved 5 Reserved 6				
below) Options Byte 1 in LSB (Default = 0x00) Options Byte 1 Table BIT Description 0 Tag IDs - LSB First 1 Reserved 2 Reserved 3 Reserved 3 Reserved 4 Reserved 5 Tag IDs in Continuous Read 6 Tag Presence ON 7 Toggle RF Reserved in MSB (Default = 0x00) Options Byte 2 in LSB (Default = 0x00) Options Byte 2 in LSB (Default = 0x00) Options Byte 2 in LSB (Default = 0x00) Options Byte 2 rable BIT Description 0 4-Byte Tag IDs (Mifare) 1 Legacy Error Codes 2 Reserved 3 Reserved 3 Reserved 4 Reserved 5 Reserved 6 Reserved 5 Reserved 6 Reserved 6 Reserved 7 Reserved			a a -	
Options Byte 1 in LSB (Default = 0x00) Options Byte 1 Table BIT Description 0 Tag IDs - LSB First 1 Reserved 2 Reserved 3 Reserved 4 Reserved 5 Tag IDs in Continuous Read 6 Tag Presence ON 7 Toggle RF Reserved in MSB (Default = 0x00) Options Byte 2 in LSB (Default = 0x00) Options Byte 2 in LSB (Default = 0x00) Options Byte 2 Table BIT Description 0 4-Byte Tag IDs (Mifare) 1 Legacy Error Codes 2 Reserved 3 Reserved 3 Reserved 3 Reserved 3 Reserved 3 Reserved 5 Reserved 5 Reserved 6 Reserved 7 Reserved 6 Reserved 7 Reserved 7 Reserved 6 Reserved		0xA0	0x00	
Options Byte 1 Table BIT Description 0 Tag IDs – LSB First 1 Reserved 2 Reserved 3 Reserved 4 Reserved 5 Tag IDs in Continuous Read 6 Tag Presence ON 7 Toggle RF Reserved in MSB (Default = 0x00) Options Byte 2 in LSB (Default = 0x00) Options Byte 2 in LSB (Default = 0x00) Options Byte 2 Table BIT Description 0 4-Byte Tag IDs (Mifare) 1 Legacy Error Codes 2 Reserved 3 Reserved 3 Reserved 3 Reserved 4 Reserved 5 Reserved 5 Reserved 5 Reserved 6 Reserved 7 Reserved 6 Reserved 7 Reserved 7 Reserved 6 Reserved 7 Reserved 6	/			
BIT Description 0 Tag IDs – LSB First 1 Reserved 2 Reserved 3 Reserved 4 Reserved 5 Tag IDs in Continuous Read 6 Tag Presence ON 7 Toggle RF Ox00 Ox00 <th colsp<="" td=""><td></td><td></td><td></td></th>	<td></td> <td></td> <td></td>			
0 Tag IDs - LSB First 1 Reserved 2 Reserved 3 Reserved 4 Reserved 5 Tag IDs in Continuous Read 6 Tag Presence ON 7 Toggle RF Ox00 Ox00 <td></td> <td></td> <td></td>				
1 Reserved 2 Reserved 3 Reserved 3 Reserved 4 Reserved 5 Tag IDs in Continuous Read 6 Tag Presence ON 7 Toggle RF Reserved in MSB (Default = 0x00) Options Byte 2 in LSB (Default = 0x00) Options Byte 2 Table BIT Description 0 4-Byte Tag IDs (Mifare) 1 Legacy Error Codes 2 Reserved 3 Reserved 3 Reserved 3 Reserved 4 Reserved 5 Reserved 6 Reserved 5 Reserved 6 Reserved 7 Reserved				
2 Reserved 3 Reserved 4 Reserved 5 Tag IDs in Continuous Read 6 Tag Presence ON 7 Toggle RF Ox00 Ox00 Ox00 Options Byte 2 in LSB (Default = 0x00) Options Byte 2 in LSB (Default = 0x00) Options Byte 2 Table BIT Description 0 4-Byte Tag IDs (Mifare) 1 Legacy Error Codes 2 Reserved 3 Reserved 3 Reserved 4 Reserved 5 Reserved 6 Reserved 5 Reserved 6 Reserved 7 Reserved 7 Reserved 7 Reserved 7 Reserved 6 Reserved 7 Reserved				
3 Reserved 4 Reserved 5 Tag IDs in Continuous Read 6 Tag Presence ON 7 Toggle RF Ox00 Ox00 Ox00 Options Byte 2 in LSB (Default = 0x00) Options Byte 2 in LSB (Default = 0x00) Options Byte 2 mLSB (Default = 0x00) Options Byte 2 Table 0 4-Byte Tag IDs (Mifare) 1 Legacy Error Codes 2 Reserved 3 Reserved 3 Reserved 4 Reserved 5 Reserved 5 Reserved 6 Reserved 7 Reserved 6 Reserved 7 Reserved				
4 Reserved 5 Tag IDs in Continuous Read 6 Tag Presence ON 7 Toggle RF Reserved in MSB (Default = 0x00) Options Byte 2 in LSB (Default = 0x00) Options Byte 2 in LSB (Default = 0x00) Options Byte 2 Table 0 4-Byte Tag IDs (Mifare) 0 4-Byte Tag IDs (Mifare) 1 Legacy Error Codes 2 Reserved 3 Reserved 3 Reserved 3 Reserved 4 Reserved 5 Reserved 5 Reserved 4 1 1 6 Reserved 6 Reserved 4 1 1 6 Reserved 5 Reserved 4 1				
5 Tag IDs in Continuous Read 6 Tag Presence ON 7 Toggle RF Ox00				
6 Tag Presence ON 7 Toggle RF Reserved in MSB (Default = 0x00) Ox00				
7Toggle RFReserved in MSB (Default = 0x00)Options Byte 2 in LSB (Default = 0x00)Options Byte 2 TableOBITDescription04-Byte Tag IDs (Mifare)1Legacy Error Codes2Reserved3Reserved4Reserved5Reserved6Reserved7Reserved	5			
Options Byte 2 in LSB (Default = 0x00) Options Byte 2 Table BIT Description 0 4-Byte Tag IDs (Mifare) 1 Legacy Error Codes 2 Reserved 3 Reserved 4 Reserved 5 Reserved 6 Reserved 7 Reserved	5			
Options Byte 2 in LSB (Default = 0x00) Options Byte 2 Table BIT Description 0 4-Byte Tag IDs (Mifare) 1 Legacy Error Codes 2 Reserved 3 Reserved 4 Reserved 5 Reserved 6 Reserved 7 Reserved	Reserved in MSB (Default = 0x00)	0x00	0x00	
BITDescription04-Byte Tag IDs (Mifare)1Legacy Error Codes2Reserved3Reserved4Reserved5Reserved6Reserved7Reserved				
04-Byte Tag IDs (Mifare)1Legacy Error Codes2Reserved3Reserved4Reserved5Reserved6Reserved7Reserved				
1Legacy Error Codes2Reserved3Reserved4Reserved5Reserved6Reserved7Reserved				
2 Reserved 3 Reserved 4 Reserved 5 Reserved 6 Reserved 7 Reserved				
3Reserved4Reserved5Reserved6Reserved7Reserved				
4 Reserved 5 Reserved 6 Reserved 7 Reserved				
5Reserved6Reserved7Reserved				
6 Reserved 7 Reserved				
7 Reserved				
		0,000	0201	
	Controller Type in MSB (Single-byte value indicates controller type in use)	UXUZ	UXUT	
type in use) 0x02 = BIS M-62				
$0x02 = BIS M-62_{-}$ $0x03 = BIS M-410_{-}$				
$0x03 = BIS M-410_{-}$ $0x04 = BIS M-411_{-}$				
$0x04 = BIS M-411_{-}$ $0x0B = BSI U-62_{-}$	—			
Software Major Release Digit in LSB (first digit in the software				
version)				
Example software version: 1.2.A.0				
·	Major Release Digit in this example = 1			

_	
	_

Parameter Field	MSB	LSB
Software Minor Release Digit in MSB (second digit in the software version) Example software version: <i>1.2.A.0</i>	0x02	0x41
Minor Release Digit in this example = 2		
Software Correction Release Digit in LSB (third digit in the software version) Example software version: <i>1.2.A.0</i> Correction Release Digit in this example = A		
Software Point Release Digit in MSB (last digit(s) in the software version) Example software version: <i>1.2.A.0</i> Point Release Digit in this example = 0	0x00	0x00
0x00 in LSB		

Communications Mode Table

BITS	7	6	5	4	3	2	1	0
0	Inte	rface:				B	aud Rate:	
1	00 = RS42 01 = RS22 10 = RS48 11 = Othe	32 / USB 85		Reserved		001 010 011	= 9600 = 19200 = 38400 = 57600 = 115200	

Table 2-10: Communications Mode Table

In the above example, the Communications Mode value of 0xA0 = 10100000 in binary, meaning that the controller is an RS485 device that is communicating at 9600 baud.

CBX COMMAND 0X38: GET CONTROLLER INFO

Command 0x38 - Description

The *Get Controller Info Command* is used to retrieve hardware version, serial number and installed firmware identification information from the specified controller.

Command 0x38 - CBx Example

This example retrieves information from the controller at Node 01.

Command from Host

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x01
Overall Length of Command (in words)	0x00	0x06
0xAA in MSB. Command ID in LSB (<i>0x38</i>)	0xAA	0x38
0x00 in MSB, Node ID in LSB	0x00	0x01
Not Used: (default: 0x00, 0x00)	0x00	0x00
Not Used: (default: 0x00, 0x00)	0x00	0x00
Not Used: (default: 0x00, 0x00)	0x00	0x00

Response from Controller

Parameter Field	MSB	LSB
Overall Length of Response (in words)	0x00	0x13
0xAA in MSB, Command Echo in LSB	0xAA	0x38
Instance Counter in MSB. Node ID Echo in LSB	<ic></ic>	0x01
Month and Day Timestamp: (March 19 th)	0x03	0x13
Hour and Minute Timestamp: (10:11: AM)	0x0A	0x0B
Seconds Timestamp in MSB (<i>:36 seconds</i>). Additional Data Length in LSB	0x24	0x1A
Controller Type in MSB Single-byte value indicates controller type: 0x02 = BIS M-62_ 0x03 = BIS M-410_ 0x04 = BIS M-411_ 0x0B = BSI U-62_ Software Major Release Digit in LSB (First digit in the software version) Example software version: <i>1.2.A.0</i> Major Release Digit in this example = 1	0x02	0x01

Parameter Field	MSB	LSB			
Software Minor Release Digit in MSB (Second digit in the	0x02	0x41			
software version)					
Example software version: 1.2.A.0					
Minor Release Digit in this example = 2					
Software Correction Release Digit in LSB (Third digit in the					
software version)					
Example software version: 1.2.A.0					
Correction Release Digit in this example = A					
Software Point Release Digit in MSB (Last digit(s) in the	0x00	0x02			
software version)					
Example software version: 1.2.A.0					
Point Release Digit in this example = 0					
Communications Type in LSB					
0x00 = RS422					
0x01 = RS232					
0x02 = RS485					
0x03 = Ethernet					
0x04 = USB					
0x05 = DeviceNet					
Software CRC (2-byte value)	0x7F, 0x36				
Loader Software Version (2-byte value)	0x00, 0x18				
Processor ID (5-byte value)	0x30, 0xFF, 0xFF, 0x0F,				
	0x	04			
Processor RFU (3-byte value)	0x00, 0x00, 0x00				
Processor Serial Number (4-byte value)	0x15, 0x40, 0xA6, 0x3B				
Processor Internal Information (2-byte value)	0xB5, 0x68				
Processor RsMaxP	0x5E				
Processor Information CRC	0xE4				

CBX COMMAND 0X40: SET CONTROLLER NAME

Command 0x40 - Description

The Set Controller Name Command is used to set a user-defined name for the specified controller. The name will be stored in the flash memory and can contain up to 64 bytes or ASCII characters.

Command 0x40 - CBx Example

This example writes the name 'COBALT' to the flash memory of the controller at Node 01.

Command from Host

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x01
Overall Length of Command (<i>in words</i>) (0x06 + 0x03 for name length in words)	0x00	0x09
0xAA in MSB, Command ID in LSB: (0x40)	0xAA	0x40
0x00 in MSB, Node ID in LSB	0x00	0x01
Not Used (default: 0x00, 0x00)	0x00	0x00
Not Used (default: 0x00, 0x00)	0x00	0x00
0x00 in MSB, Name Length in Bytes in LSB	0x00	0x06
Name Data - bytes 1 = C and 2 = O	0x43	0x4F
Name Data - bytes 3 = B and 4 = A	0x42	0x41
Name Data - bytes 5 = L and 6 = T	0x4C	0x54

Response from Controller

Parameter Field	MSB	LSB
Overall Length of Response (in words)	0x00	0x06
0xAA in MSB, Command Echo in LSB	0xAA	0x40
Instance Counter in MSB, Node ID Echo in LSB	<ic></ic>	0x01
Month and Day Timestamp: (March 19 th)	0x03	0x13
Hour and Minute Timestamp: (10:11: AM)	0x0A	0x0B
Seconds Timestamp in MSB: (:36 seconds). 0x00 in LSB	0x24	0x00

CBX COMMAND 0X43: SET CONTROLLER CONFIGURATION

Command 0x43 - Description

The Set Controller Configuration Command is used to modify and save changes to the controller's configuration, which will be stored in the unit's flash memory.

2

It is recommended that the user first run the Command 0x33: "Get Controller Configuration" and make note of the current controller configuration values prior to executing this command.

Command 0x43 - CBx Example

This example sets the following configuration parameters for the controller at Node 01.

Command from Host

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x01
Overall Length of Command (in words)	0x00	0x10
0xAA in MSB. Command ID in LSB: (0x43)	0xAA	0x43
0x00 in MSB, Node ID in LSB	0x00	0x01
Not Used (default: 0x00, 0x00)	0x00	0x00
Not Used (default: 0x00, 0x00)	0x00	0x00
Additional Data Length (in bytes)	0x00	0x13
Continuous Read at Power-up - Start Address : (Two-byte integer indicating the tag location where the read operation will begin when performing a continuous read at power-up or reset, <i>default: 0x0000 = begin read at first available byte</i>)	0x00	0x00
Continuous Read at Power-up - Block Size : (Two-byte integer indicating the number of bytes to retrieve when performing a continuous read at power-up or reset. Any value greater than zero instructs the controller to enter continuous read mode the next time it powers-up or is reset. When this value is set to zero, the controller will not enter continuous read mode at power-up or reset, $default = 0x0000$)	0x00	0x00
Continuous Read at Power-up - Duplicate Read Delay in MSB: (Single-byte value indicates the number of seconds that a tag must remain out of RF range before it can be re-read and its data sent to the host again. Only applicable when <i>Block Size</i> \geq one, thereby enabling continuous read at power-up, <i>default: 0x00</i>) Node ID in LSB (For -485 models only, this single-byte value indicates the controller's Node ID number, between 01–16, for all other controllers, the default = one, 0x01)	0x00	0x01
Reserved (default value: 0x00, 0x00)	0x00	0x00

Parameter Fi	ield		MSB	LSB
Tag Type in	MSB: (Sir	gle-byte value indicates type of tag integrated	0x01	0x00
circuit to recognize).				
0x01 = BIS M-103_ (ISO 15693, I-CODE SLI)				
0x03 = BIS M				
$0x05 = BIS M-110_ (Mifare)$				
0x06 = BIS N	/-102_	(ISO 15693)		
(Tag Type is	ignored by	y BIS U-62)		
Reserved in	LSB (defa	ault: 0x00)		
Communica	tion Mod	e in MSB (See Communications Mode Table	0xA0	0x00
below)				
Options Byte		3		
Options Byte				
	BIT	Description		
	0	Tag IDs – LSB First		
	1	Reserved		
	2	Reserved		
	3	Reserved		
	4	Reserved		
	5	Tag IDs in Continuous Read		
	6	Tag Presence ON		
	7	Toggle RF		
Reserved in			0x00	0x00
Options Byt		3		
Options Byte				
	BIT	Description		
	0	4-Byte Tag IDs (Mifare)		
	1	Legacy Error Codes		
	2	Reserved		
	3	Reserved		
	4	Reserved		
	5 6	Reserved Reserved		
	6 7	Reserved		
Controller T	-		0x02	0x01
		se Digit in LSB	0702	0701
		se Digit in MSB	0x02	0x41
Correction F				
	int Relea	se Digit in MSB	0x00	0x00
0x00 in LSB				

Communications Mode Table

BITS	7	6	5	4	3	2	1	0
0	Inte	rface:				B	aud Rate:	
1	00 = RS4 01 = RS2 10 = RS4 11 = Othe	32 / USB 85		Reserved		001 010 011	= 9600 = 19200 = 38400 = 57600 = 115200	

NOTE

In the above example, the Communications Mode value of 0xA0 = 10100000 in binary, meaning that the controller is an RS485 device that is communicating at 9600 baud.

Response from Controller

Parameter Field	MSB	LSB
Overall Length of Response (in words)		0x06
0xAA in MSB. Command Echo in LSB	0xAA	0x43
Instance Counter in MSB, Node ID Echo in LSB	<ic></ic>	0x01
Month and Day Timestamp: (March 19 th)	0x03	0x13
Hour and Minute Timestamp: (10:11: AM)		0x0B
Seconds Timestamp in MSB: (36 seconds) 0x00 in LSB	0x24	0x00

CBX COMMAND 0X4E: SET CONTROLLER TIME

Command 0x4E - Description

The *Set Controller Time Command* is used to set the controller's internal clock and calendar. Date and Time are specified in the following format:

- Year MSB:LSB (2-byte Integer)
- Month (byte), Day of Month (byte)
- Hour (byte), Minute (byte)
- Seconds (byte), 0x00

Command 0x4E - CBx Example

This example sets the date and time on the controller to March 19, 2007 - 9:30 a.m.

Command from Host

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x01
Overall Length of Command (in words)	0x00	0x0A
0xAA in MSB. Command ID in LSB: (<i>0x4E</i>)	0xAA	0x4E
0x00 in MSB, Node ID in LSB	0x00	0x01
Not Used (default: 0x00, 0x00)	0x00	0x00
Not Used (default: 0x00, 0x00)	0x00	0x00
Time/Date Data Length (7 bytes)	0x00	0x07
Year: (2007)	0x07	0xD7
Month and Day	0x03	0x13
Hour and Minute	0x09	0x1E
Seconds in MSB. 0x00 in LSB	0x00	0x00

Response from Controller

Parameter Field	MSB	LSB
Overall Length of Response (in words)	0x00	0x06
0xAA in MSB. Command Echo in LSB	0xAA	0x4E
Instance Counter in MSB. Node Echo in LSB	<ic></ic>	0x01
Month and Day Timestamp: (March 19 th)	0x03	0x13
Hour and Minute Timestamp: (9:30: AM)		0x1E
Seconds Timestamp in MSB: (03 seconds) 0x00 in LSB	0x03	0x00

CBX COMMAND 0X53: INITIALIZE CONTROLLER

Command 0x53 - Description

The *Initialize Controller Command* removes all stored information from the specified controller, including all configuration, macro and trigger data. The controller's Node ID number will be physically reconfigured to factory defaults as well.

Command 0x53 - CBx Example

This example will remove all stored information from the controller at Node 01.

Command from Host

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x01
Overall Length of Command (in words)	0x00	0x06
0xAA in MSB, Command ID in LSB: (0x53)	0xAA	0x53
0x00 in MSB, Node ID in LSB	0x00	0x01
Not Used (default: 0x00, 0x00)	0x00	0x00
Not Used (default: 0x00, 0x00)	0x00	0x00
Not Used (default: 0x00, 0x00)	0x00	0x00

Response from Controller

Parameter Field	MSB	LSB
Overall Length of Response (in words)		0x06
0xAA in MSB. Command Echo in LSB	0xAA	0x53
Instance Counter in MSB. Node ID Echo in LSB	<ic></ic>	0x01
Month and Day Timestamp: (March 19 th)	0x03	0x13
Hour and Minute Timestamp: (10:11: AM)	0x0A	0x0B
Seconds Timestamp in MSB: (36 seconds). 0x00 in LSB	0x24	0x00

CBX COMMAND 0X54: RESET CONTROLLER

Command 0x54 - Description

The *Reset Controller Command* is used to reset power to the specified controller without clearing any stored configuration information. However, the controller's configuration can be reset to default values when *Command 0x54* is issued AND a Configuration Tag is placed in the antenna's RF field prior to execution.

Command 0x54 - CBx Example

This example resets power to the controller at Node 01.

Command from Host

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x01
Overall Length of Command (in words)	0x00	0x06
0xAA in MSB. Command ID in LSB: (0x54)	0xAA	0x54
0x00 in MSB, Node ID in LSB	0x00	0x01
Not Used (default: 0x00, 0x00)	0x00	0x00
Not Used (default: 0x00, 0x00)	0x00	0x00
Not Used (default: 0x00, 0x00)	0x00	0x00

Response from Controller

Parameter Field	MSB	LSB
Overall Length of Response (in words)	0x00	0x06
0xAA in MSB, Command Echo in LSB	0xAA	0x54
Instance Counter in MSB. Node ID Echo in LSB	<ic></ic>	0x01
Month and Day Timestamp: (March 19 th)	0x03	0x13
Hour and Minute Timestamp: (10:11: AM)	0x0A	0x0B
Seconds Timestamp in MSB: (:36 seconds). 0x00 in LSB	0x24	0x00

CBX COMMAND 0X60: INITIALIZE GATEWAY/HUB

Command 0x60 - Description

The *Initialize Gateway/Hub Command* is used to clear all Subnet Node configuration information, user-defined names and Notification Mask settings stored in the Gateway or Hub's flash memory. This command also resets the Subnet baud rate to 9600.

Command 0x60 - CBx Command Example

This example initializes the Gateway or Hub interface module and removes from the flash memory all configuration information for all Subnet Nodes.

Command from Host

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x20
Overall Length of Command (in words)	0x00	0x06
0xAA in MSB. Command ID in LSB: (<i>0x60</i>)	0xAA	0x60
0x00 in MSB. Node ID in LSB (Gateway/Hub Node = 0x20)	0x00	0x20
Not Used (default: 0x00, 0x00)	0x00	0x00
Not Used (default: 0x00, 0x00)	0x00	0x00
Not Used (default: 0x00, 0x00)	0x00	0x00

Response from Gateway/Hub

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x20
Overall Length of Response (in words)	0x00	0x06
0xAA in MSB, Command Echo in LSB	0xAA	0x60
Instance Counter in MSB. Node ID Echo in LSB	<ic></ic>	0x20
Month and Day Timestamp: (March 19 th)	0x03	0x13
Hour and Minute Timestamp: (10:11: AM)	0x0A	0x0B
Seconds Timestamp in MSB: (36 seconds). 0x00 in LSB	0x24	0x00

CBX COMMAND 0X61: RESET GATEWAY/HUB

Command 0x61 - Description

The *Reset Gateway/Hub Command* is used to perform a soft (electrical) reset of the Gateway or Hub interface module. The device will behave as if it had just powered up. If dipswitch 1 is ON (its default setting), the unit will automatically begin scanning all Subnet Nodes for attached RFID controllers.

Command 0x61 - CBx Example

This example resets the Gateway/Hub interface module.

Command from Host

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x20
Overall Length of Command (in words)	0x00	0x06
0xAA in MSB. Command ID in LSB: (<i>0x60</i>)	0xAA	0x61
0x00 in MSB. Node ID in LSB (Gateway/Hub Node = 0x20)	0x00	0x20
Not Used (default: 0x00, 0x00)	0x00	0x00
Not Used (default: 0x00, 0x00)	0x00	0x00
Not Used (default: 0x00, 0x00)	0x00	0x00

Response from Gateway/Hub

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x20
Overall Length of Response (in words)	0x00	0x06
0xAA in MSB, Command Echo in LSB	0xAA	0x61
Instance Counter in MSB. Node ID Echo in LSB	<ic></ic>	0x20
Month and Day Timestamp: (March 19 th)	0x03	0x13
Hour and Minute Timestamp: (10:11: AM)	0x0A	0x0B
Seconds Timestamp in MSB: (36 seconds). 0x00 in LSB	0x24	0x00

CBX COMMAND 0X62: INITIALIZE ALL NODES

Command 0x62 - Description

The *Initialize All Nodes Commands* removes from the Gateway or Hub interface module all stored configuration information for all Subnet Nodes. Subnet Nodes will be reconfigured to factory defaults.

Command 0x62 - CBx Example

This example initializes all controllers on the Subnet network, thereby removing all stored configuration information and restoring factory default settings to all controllers.

Command from Host

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x20
Overall Length of Command (in words)	0x00	0x06
0xAA in MSB. Command ID in LSB: (<i>0x60</i>)	0xAA	0x62
0x00 in MSB. Node ID in LSB (Gateway/Hub Node = 0x20)	0x00	0x20
Not Used (default: 0x00, 0x00)	0x00	0x00
Not Used (default: 0x00, 0x00)	0x00	0x00
Not Used (default: 0x00, 0x00)	0x00	0x00

Response from Gateway/Hub

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x20
Overall Length of Response (in words)	0x00	0x06
0xAA in MSB, Command Echo in LSB	0xAA	0x62
Instance Counter in MSB. Node ID Echo in LSB	<ic></ic>	0x20
Month and Day Timestamp: (March 19 th)	0x03	0x13
Hour and Minute Timestamp: (10:11: AM)	0x0A	0x0B
Seconds Timestamp in MSB: (36 seconds). 0x00 in LSB	0x24	0x00

CBX COMMAND 0X63: INITIALIZE ALL NODE MACROS

Command 0x63 - Description

The *Initialize All Node Macros Command* initializes (removes) from memory all stored macros from all Subnet Nodes.

Command 0x63 - CBx Example

This example removes all macros from the Gateway/Hub's internal memory as well as from any connected controllers on the Subnet network.

Command from Host

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x20
Overall Length of Command (in words)	0x00	0x06
0xAA in MSB, Command ID in LSB: (0x60)	0xAA	0x63
0x00 in MSB, Node ID in LSB (Gateway/Hub Node = 0x20)	0x00	0x20
Not Used (default: 0x00, 0x00)	0x00	0x00
Not Used (default: 0x00, 0x00)	0x00	0x00
Not Used (default: 0x00, 0x00)	0x00	0x00

Response from Gateway/Hub

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x20
Overall Length of Response (in words)	0x00	0x06
0xAA in MSB, Command Echo in LSB	0xAA	0x63
Instance Counter in MSB, Node ID Echo in LSB	<ic></ic>	0x20
Month and Day Timestamp: (March 19 th)	0x03	0x13
Hour and Minute Timestamp: (10:11: AM)	0x0A	0x0B
Seconds Timestamp in MSB: (36 seconds). 0x00 in LSB	0x24	0x00

CBX COMMAND 0X70: START SUBNET

Command 0x70 - Description

The *Start Subnet Command* instructs the Gateway/Hub to begin "*polling*" the Subnet network. Initiating this command is only required when dipswitch 1 on the Gateway/Hub is set to OFF. With dipswitch 1 in the OFF position, the Gateway/Hub will not automatically begin polling Subnet Nodes upon power-up.

Setting dipswitch 1 to OFF is a means of forcing the Gateway/Hub to wait until a connection with the host has been established. This is useful when it is desired that the Gateway/Hub NOT poll controllers until a host-initiated connection exists.

Command 0x70 - CBx Example

This example starts the Subnet, which instructs the Gateway/Hub to begin "polling" all connected controllers on the Subnet network.

Command from Host

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x20
Overall Length of Command (in words)	0x00	0x06
0xAA in MSB, Command ID in LSB: (0x60)	0xAA	0x70
0x00 in MSB, Node ID in LSB (Gateway/Hub Node = $0x20$)	0x00	0x20
Not Used (default: 0x00, 0x00)	0x00	0x00
Not Used (default: 0x00, 0x00)	0x00	0x00
Not Used (default: 0x00, 0x00)	0x00	0x00

Response from Gateway/Hub

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x20
Overall Length of Response (in words)	0x00	0x06
0xAA in MSB, Command Echo in LSB	0xAA	0x70
Instance Counter in MSB, Node ID Echo in LSB	<ic></ic>	0x20
Month and Day Timestamp: (March 19 th)	0x03	0x13
Hour and Minute Timestamp:(10:11: AM)	0x0A	0x0B
Seconds Timestamp in MSB (36 seconds), 0x00 in LSB	0x24	0x00

CBX COMMAND 0X71: MOVE CONTROLLER (GATEWAY ONLY)

Command 0x71 - Description

The *Move Controller Command*, for Gateway interface modules only, is used to move all of the stored configuration data for a particular Node ID to another specified Node ID. When issuing this command, the Gateway will copy the stored configuration information from the source Node ID to the destination Node ID. If there is a controller attached at the original Node ID, it will be reassigned the new (destination) Node ID as well. After the information is moved, the configuration for the original Node ID will be reinitialized to factory defaults.

Command 0x71 - CBx Example

This example moves the Gateway's stored controller configuration for Node ID 04 to Node ID 08.

Command from Host

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x20
Overall Length of Command (in words)	0x00	0x06
0xAA in MSB, Command ID in LSB: (0x60)	0xAA	0x71
0x00 in MSB, Node ID in LSB (Gateway Node = 0x20)	0x00	0x20
0x00 in MSB, Node ID of Controller to Move in LSB	0x00	0x04
0x00 in MSB, Destination Node ID in LSB	0x00	0x08
Not Used (default: 0x00, 0x00)	0x00	0x00

Response from Gateway/Hub

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x20
Overall Length of Response (in words)	0x00	0x06
0xAA in MSB, Command Echo in LSB	0xAA	0x71
Instance Counter in MSB, Node ID Echo in LSB	<ic></ic>	0x20
Month and Day Timestamp: (March 19 th)	0x03	0x13
Hour and Minute Timestamp: (10:11: AM)	0x0A	0x0B
Seconds Timestamp in MSB: (36 seconds) 0x00 in LSB	0x24	0x00

Command 0x79 - Description

2

The *Clear Pending Response Command* deletes all pending or buffered responses in the Gateway/Hub and resets all Instance Counters for all nodes, including the Gateway/Hub, to zero (0x00).

Command 0x79 - CBx Example

This example removes any pending response data from the Gateway/Hub and resets the Instance Counter values for all nodes (including the Gateway/Hub) to zero.

Command from Host

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x20
Overall Length of Command (in words)	0x00	0x06
0xAA in MSB. Command ID in LSB: (0x60)	0xAA	0x79
0x00 in MSB. Node ID in LSB (Gateway/Hub Node = 0x20)	0x00	0x20
Not Used (default: 0x00, 0x00)	0x00	0x00
Not Used (default: 0x00, 0x00)	0x00	0x00
Not Used (default: 0x00, 0x00)	0x00	0x00

Response from Gateway/Hub

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x20
Overall Length of Response (in words)	0x00	0x06
0xAA in MSB, Command Echo in LSB	0xAA	0x79
Instance Counter in MSB, Node ID Echo in LSB	<ic></ic>	0x20
Month and Day Timestamp: (March 19 th)	0x03	0x13
Hour and Minute Timestamp: (10:11: AM)	0x0A	0x0B
Seconds Timestamp in MSB: (36 seconds). 0x00 in LSB	0x24	0x00

CBX COMMAND 0X92: MULTI-TAG READ ID AND DATA ALL

Command 0x92 - Description

The *Multi-Tag Read ID and Data All Command* is used to retrieve the tag ID and a contiguous segment of data from all RFID tags in range (or those with the specified *AFI*).

The controller will generate separate responses containing the tag ID and the requested data for each responding tag. Each response packet will be sent to the host as soon as it is available. The returned tag IDs can be used to read from/write to a single tag (via the *Multi-Tag Block Read/Write by ID* commands) when multiple tags are identified simultaneously.

A final termination packet is sent when the *Timeout Value* expires.

When the *Start Address* is set to zero (*0x0000*), the controller will start reading at the beginning (or first accessible byte) of the tag.

If the *Block Size* exceeds the last tag address, the controller will return an error message.

Command 0x92 - CBx Example

This example instructs the controller at Node 01 to read the tag ID and 16 bytes of data from each tag in range starting at address 0x0001. A *Timeout Value* of 3 seconds ($0x0BB8 = 3000 \times 1msec$ increments) is set for the completion of the command. The *AFI* byte is set to zero so that all tags in range will respond.

Command from Host

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x01
Overall Length of Command (in words)	0x00	0x08
0xAA in MSB, Command ID in LSB	0xAA	0x92
0x00 in MSB . Node ID in LSB	0x00	0x01
Timeout Value	0x0B	0xB8
Start Address	0x00	0x01
Block Size	0x00	0x10
AFI in MSB. Anti-Collision Mode in LSB	0x00	0x01
Tag Limit in MSB. 0x00 in LSB	0x64	0x00

Response from Controller (for Each Tag Found)

Parameter Field	MSB	LSB
Overall Length of Response (in words)	0x00	0x06 + number of words retrieved
0xAA in MSB, Command Echo in LSB	0xAA	0x92
Instance Counter in MSB Node ID Echo in LSB	<ic></ic>	0x01
Month and Day Timestamp	<month></month>	<day></day>
Hour and Minute Timestamp	<hour></hour>	<min></min>
Seconds Timestamp Additional Data Length (24 additional bytes returned, includes both ID and Data)	<sec></sec>	0x18
Tag ID (bytes 1 and 2)	<tag b1="" id=""></tag>	<tag b2="" id=""></tag>
Tag ID (bytes 3 and 4)	<tag b3="" id=""></tag>	<tag b4="" id=""></tag>
Tag ID (bytes 5 and 6)	<tag b5="" id=""></tag>	<tag b6="" id=""></tag>
Tag ID (bytes 7 and 8)	<tag b7="" id=""></tag>	<tag b8="" id=""></tag>
Returned Data (bytes 1 and 2)	<d1></d1>	<d2></d2>
Returned Data (bytes 3 and 4)	<d3></d3>	<d4></d4>
Returned Data (bytes 15 and 16)	<d15></d15>	<d16></d16>

Final Response Packet

Parameter Field	MSB	LSB
Overall Length of Response (in words)	0x00	0x07
0xAA in MSB, 0xFF in LSB	0xAA	0xFF
Instance Counter in MSB	<ic></ic>	0x01
Node ID Echo in LSB		
Month and Day Timestamp	<month></month>	<day></day>
Hour and Minute Timestamp	<hour></hour>	<min></min>
Seconds Timestamp Additional Data Length (2 bytes: "Number of Tags" and "Status")	<sec></sec>	0x02
Number of Tags Read in MSB Status in LSB: 0x00 = operation completed successfully, 0x07 = Read Tag ID failed / Tag Not Found	<# of tags read>	0x00

CBX COMMAND 0X95: MULTI-TAG BLOCK READ ALL

Command 0x95 - Description

The *Multi-Tag Block Read All Command* is used to retrieve a contiguous segment of data from all RFID tags within RF range (or those with the specified *AFI*).

The controller will generate separate responses containing the requested data for each responding tag. Each response packet will be sent to the host as soon as it is available.

A final termination packet is sent when the *Timeout Value* expires.

When the *Start Address* is set to zero (*0x0000*), the controller will start reading at the beginning (or first accessible byte) of the tag.

If the *Block Size* exceeds the last tag address, the controller will return an error message.

Command 0x95 - CBx Example

This example instructs the controller to read 16 bytes of data from each tag in range starting at address 0x0001. A *Timeout Value* of 3 seconds ($0x0BB8 = 3000 \times 1msec$ increments) is set for the completion of the command. The *AFI* byte is set to zero so all tags in range will respond.

Command from Host

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x01
Overall Length of Command (in words)	0x00	0x08
0xAA in MSB, Command ID in LSB	0xAA	0x95
0x00 in MSB. Node ID in LSB	0x00	0x01
Timeout Value	0x0B	0xB8
Start Address	0x00	0x01
Block Size	0x00	0x10
AFI in MSB. Anti-Collision Mode in LSB	0x00	0x01
Tag Limit in MSB. 0x00 in LSB	0x64	0x00

Response from Controller (for Each Tag Found)

Parameter Field	MSB	LSB
Overall Length of Response (in words)	0x00	0x06 + number of words retrieved
0xAA in MSB, Command Echo in LSB	0xAA	0x95
Instance Counter in MSB. Node ID Echo in LSB	<ic></ic>	0x01
Month and Day Timestamp	<month></month>	<day></day>
Hour and Minute Timestamp	<hour></hour>	<min></min>
Seconds Timestamp. Additional Data Length (16 additional bytes returned)	<sec></sec>	0x10
Returned Data (bytes 1 and 2)	<d1></d1>	<d2></d2>
Returned Data (bytes 3 and 4)	<d3></d3>	<d4></d4>
Returned Data (bytes 15 and 16)	<d15></d15>	<d16></d16>

Final Response Packet

Parameter Field	MSB	LSB
Overall Length of Response (in words)	0x00	0x07
0xAA in MSB, 0xFF in LSB	0xAA	0xFF
Instance Counter in MSB. Node ID Echo in LSB	<ic></ic>	<node id=""></node>
Month and Day Timestamp	<month></month>	<day></day>
Hour and Minute Timestamp	<hour></hour>	<min></min>
Seconds Timestamp. Additional Data Length (2 bytes: "Number of Tags" and "Status")	<sec></sec>	0x02
Number of Tags Read in MSB Status in LSB: 0x00 = operation completed successfully, 0x07 = Read Tag ID failed / Tag Not Found	<# of tags read>	0x00

CBX COMMAND 0X96: MULTI-TAG BLOCK WRITE ALL

Command 0x96 - Description

The *Multi-Tag Block Write All Command* is used to write a contiguous segment of data to all RFID tags in range (or those with the specified *AFI*).

When the *Start Address* is set to zero (*0x0000*), the specified controller will start writing at the beginning (or first accessible byte) of the tag.

If the *Block Size* exceeds the last tag address, the controller will return an error message.

Command 0x96 - CBx Example

This example instructs the controller to write 16 bytes of data to each RFID tag in range starting at address 0x0001. A *Timeout Value* of 3 seconds ($0x0BB8 = 3000 \times 1msec$ *increments*) is set for the completion of the command. The *AFI* byte is set to zero so that data will be written to all tags.

Command from Host

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x01
Overall Length of Command (in words)	0x00	0x07 + number of <i>Data Byte</i> words
0xAA in MSB, Command ID in LSB	0xAA	0x96
0x00 in MSB Node ID in LSB	0x00	0x01
Timeout Value	0x0B	0xB8
Start Address	0x00	0x01
Block Size	0x00	0x10
AFI in MSB, 0x00 in LSB	0x00	0x00
Data (bytes 1 and 2)	<d1></d1>	<d2></d2>
Data (bytes 3 and 4)	<d3></d3>	<d4></d4>
Data (bytes 15 and 16)	<d15></d15>	<d16></d16>

Response from Controller

Parameter Field	MSB	LSB
Overall Length of Response (in words)	0x00	0x07
0xAA in MSB, 0xFF in LSB	0xAA	0xFF
Instance Counter in MSB Node ID Echo in LSB	<ic></ic>	0x01
Month and Day Timestamp	<month></month>	<day></day>
Hour and Minute Timestamp	<hour></hour>	<min></min>
Seconds Timestamp Additional Data Length (2 bytes: "Number of Tags" and "Status")	<sec></sec>	0x02
Number of Tags Written in MSB Status in LSB: 0x00 = operation completed successfully, 0x07 = Read Tag ID failed / Tag Not Found	<# of tags written>	0x00

CBX COMMAND 0X97: MULTI-TAG GET INVENTORY

Command 0x97 - Description

The *Multi-Tag Get Inventory Command* is used to retrieve the tag ID from all RFID tags in range (or those with the specified *AFI*). Each tag has a unique Tag ID or Serial Number. This number cannot be changed and is not considered part of the tag's available memory.

The controller will generate separate responses containing the tag ID for each responding tag. Each response packet will be sent to the host as soon as it is available. The returned tag IDs can be used to read from/write to a single tag (via the *Multi-Tag Block Read/Write by ID* commands) when multiple tags are identified simultaneously.

A final termination packet is sent when the *Timeout Value* expires.

Command 0x97 - CBx Example

This example instructs the controller to read the tag ID from each tag in range. A *Timeout Value* of 3 seconds ($0x0BB8 = 3000 \times 1msec$ increments) is set for the completion of the command. The *AFI* byte is set to zero so all tags in range will respond.

Command from Host

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x01
Overall Length of Command (in words)	0x00	0x08
0xAA in MSB, Command ID in LSB	0xAA	0x97
0x00 in MSB. Node ID in LSB	0x00	0x01
Timeout Value	0x0B	0xB8
Start Address	0x00	0x00
Block Size	0x00	0x00
AFI in MSB. Anti-Collision Mode in LSB	0x00	0x01
Tag Limit in MSB, 0x00 in LSB	0x64	0x00

Response from Controller (for Each Tag Found)

Parameter Field	MSB	LSB
Overall Length of Response (in words)	0x00	0x0A
0xAA in MSB, Command Echo in LSB	0xAA	0x97
Instance Counter in MSB. Node ID Echo in LSB	<ic></ic>	0x01
Month and Day Timestamp	<month></month>	<day></day>
Hour and Minute Timestamp	<hour></hour>	<min></min>
Seconds Timestamp in MSB. Additional Data Length in LSB (8 additional bytes returned)	<sec></sec>	0x08
Tag ID (bytes 1 and 2)	<id1></id1>	<id2></id2>
Tag ID (bytes 3 and 4)	<id3></id3>	<id4></id4>
Tag ID (bytes 5 and 6)	<id5></id5>	<id6></id6>
Tag ID (bytes 7 and 8)	<id7></id7>	<id8></id8>

Final Response Packet

Parameter Field	MSB	LSB
Overall Length of Response (in words)	0x00	0x07
0xAA in MSB, 0xFF in LSB	0xAA	0xFF
Instance Counter in MSB. Node ID Echo in LSB	<ic></ic>	0x01
Month and Day Timestamp	<month></month>	<day></day>
Hour and Minute Timestamp	<hour></hour>	<min></min>
Seconds Timestamp in MSB. Additional Data Length in LSB (2 bytes: "Number of Tags" and "Status")	<sec></sec>	0x02
Number of Tags Found in MSB Status in LSB: 0x00 = operation completed successfully, 0x07 = Read Tag ID failed / Tag Not Found	<# of tags found>	0x00

CBX COMMAND 0X98: MULTI-TAG SEARCH ALL

Command 0x98 - Description

The *Multi-Tag Search All Command* is used to check for the presence of RFID tags in the antenna field.

As soon as the controller finds a tag, it will return a response to the host. If no tags are present, and the *Timeout Value* has expired, the controller will return an error.

Command 0x98 - CBx Example

This example instructs the controller to search for the presence of any RFID tag in range. A *Timeout Value* of 3 seconds ($0x0BB8 = 3000 \times 1msec$ increments) is set for the completion of the command. The *AFI* byte is set to zero so all tags in range will respond.

Command from Host

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x01
Overall Length of Command (in words)	0x00	0x08
0xAA in MSB, Command ID in LSB	0xAA	0x98
0x00 in MSB, Node ID in LSB	0x00	0x01
Timeout Value	0x0B	0xB8
Start Address	0x00	0x00
Block Size	0x00	0x00
AFI in MSB. Anti-Collision Mode in LSB	0x00	0x01
Tag Limit in MSB, 0x00 in LSB	0x64	0x00

Response from Controller

Parameter Field	MSB	LSB
Overall Length of Response (in words)	0x00	0x07
0xAA in MSB, 0xFF in LSB	0xAA	0xFF
Instance Counter in MSB Node ID Echo in LSB	<ic></ic>	0x01
Month and Day Timestamp	<month></month>	<day></day>
Hour and Minute Timestamp	<hour></hour>	<min></min>
Seconds Timestamp in MSB Additional Data Length in LSB (2 bytes: "Number of Tags" and "Status")	<sec></sec>	0x02
Number of Tags Found in MSB Status in LSB: 0x00 = operation successful, 0x07 = Tag Not Found	<# of tags found>	0x00

Command 0xA5 - Description

2

The *Multi-Tag Block Read by ID Command* is used to read a contiguous segment of data from a specific RFID tag identified by its tag ID.

An error packet is sent if the specific tag is not present and the *Timeout Value* expires.

When the *Start Address* is set to zero (*0x0000*), the controller will start reading at the beginning (or first accessible byte) of the tag.

If the *Block Size* exceeds the last tag address, the controller will return an error message.

Command 0xA5 - CBx Example

This example instructs the controller to read 16 bytes of data from the tag containing the specified tag ID, beginning at tag address 0x0001. A *Timeout Value* of 3 seconds ($0x0BB8 = 3000 \times 1msec$ increments) is set for the completion of the command.

Command from Host

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x01
Overall Length of Command (in words)	0x00	0x0B
0xAA in MSB, Command ID in LSB	0xAA	0xA5
0x00 in MSB. Node ID in LSB	0x00	0x01
Timeout Value	0x0B	0xB8
Start Address	0x00	0x01
Block Size	0x00	0x10
AFI in MSB, 0x00 in LSB	0x00	0x00
Tag ID (bytes 1 and 2)	<id1></id1>	<id2></id2>
Tag ID (bytes 3 and 4)	<id3></id3>	<id4></id4>
Tag ID (bytes 5 and 6)	<id5></id5>	<id6></id6>
Tag ID (bytes 7 and 8)	<id7></id7>	<id8></id8>

Response from Controller

Parameter Field	MSB	LSB
Overall Length of Response (in words)	0x00	0x06 + number of returned words
0xAA in MSB, Command Echo in LSB	0xAA	0x95
Instance Counter in MSB, Node ID Echo in LSB	<ic></ic>	0x01
Month and Day Timestamp	<month></month>	<day></day>
Hour and Minute Timestamp	<hour></hour>	<min></min>
Seconds Timestamp in MSB. Additional Data Length (16 additional bytes returned) in LSB	<sec></sec>	0x10
Returned Data (bytes 1 and 2)	<d1></d1>	<d2></d2>
Returned Data (bytes 3 and 4)	<d3></d3>	<d4></d4>
Returned Data (bytes 15 and 16)	<d15></d15>	<d16></d16>

CBX COMMAND 0XA6: MULTI-TAG BLOCK WRITE BY ID

Command 0xA6 - Description

2

The *Multi-Tag Block Write by ID Command* is used to write a contiguous segment of data to a specific RFID tag identified by its tag ID.

An error packet is sent if the specific tag is not present and the *Timeout Value* expires.

When the *Start Address* is set to zero (*0x0000*), the controller will start writing at the beginning (or first accessible byte) of the tag.

If the *Block Size* exceeds the last tag address, the controller will return an error message.

Command 0xA6 - CBx Example

This example instructs the controller at Node 01 to write 16 bytes of data to the tag containing the specified tag ID, beginning at tag address 0x0001. A *Timeout Value* of 3 seconds ($0x0BB8 = 3000 \times 1msec$ increments) is set for the completion of the command.

Command from Host

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x01
Overall Length of Command (in words)	0x00	0x0B + number of words in <i>Block Size</i>
0xAA in MSB, Command ID in LSB	0xAA	0xA6
0x00 in MSB. Node ID in LSB	0x00	0x01
Timeout Value	0x0B	0xB8
Start Address	0x00	0x01
Block Size	0x00	0x10
AFI in MSB, 0x00 in LSB	0x00	0x00
Tag ID (bytes 1 and 2)	<id1></id1>	<id2></id2>
Tag ID (bytes 3 and 4)	<id3></id3>	<id4></id4>
Tag ID (bytes 5 and 6)	<id5></id5>	<id6></id6>
Tag ID (bytes 7 and 8)	<id7></id7>	<id8></id8>
Data (bytes 1 and 2)	<d1></d1>	<d2></d2>
Data (bytes 3 and 4)	<d3></d3>	<d4></d4>
Data (bytes 15 and 16)	<d15></d15>	<d16></d16>

Response from Controller

Parameter Field	MSB	LSB
Overall Length of Response (in words)	0x00	0x06
0xAA in MSB, Command Echo in LSB	0xAA	0xA6
Instance Counter in MSB. Node ID Echo in LSB	<ic></ic>	0x01
Month and Day Timestamp	<month></month>	<day></day>
Hour and Minute Timestamp	<hour></hour>	<min></min>
Seconds Timestamp in MSB. 0x00 in LSB	<sec></sec>	0x00

CBX COMMAND 0XC0: SET UHF CONTROLLER CONFIGURATION

Command 0xC0 - Description

The Set UHF Controller Configuration Command is used to modify and save changes to the UHF-Series controller's configuration, which will be stored in the unit's flash memory.

2

It is recommended that the user first run the Command 0xC1: "Get UHF Controller Configuration" and make note of the current controller configuration values prior to executing this command.

Command 0xC0 - CBx Example

This example permits the user to modify or write the indicated configuration parameters to the flash memory of the UHF controller at Node 01. The total number of bytes available for this purpose is **nine**.

Command from Host

Parameter Field		MSB	LSB
CBx Header in MSB	, Node ID in LSB	0xFF	0x01
Overall Length of C	ommand (in words)	0x00	0x08
0xAA in MSB. Com	nand ID in LSB: (<i>0x43</i>)	0xAA	0xC0
0x00 in MSB, Node	ID in LSB	0x00	0x01
UHF Configuration	Byte 1 in MSB	<byte 1=""></byte>	<byte 2=""></byte>
UHF Configuration	Byte 2 in LSB	-	
	present the Reader Output Power (value		
from 0 to 500 mW).			
UHF Configuration	Byte 3 in MSB	<reserved>*</reserved>	<reserved>*</reserved>
UHF Configuration	Byte 4 in LSB		
UHF Configuration	Byte 5 in MSB	<reserved>*</reserved>	<reserved>*</reserved>
UHF Configuration	Byte 6 in LSB		
UHF Configuration	Byte 7 in MSB	<reserved>*</reserved>	<partially< td=""></partially<>
UHF Configuration	Byte 8 in LSB		Reserved>
Byte 8 is partially re	served according to the table below. This		
byte permits the us	ser to select the specific UHF Channel		
through which comm	nands are transmitted. The user can write		
one of the following	values: 0 , 3 , 6 , or 9 in bits 4 to 7.		
BIT	Description		
0	Reserved*		
1	Reserved*		
2	Reserved*		
3	Reserved*		
4	<channel id="" value=""></channel>		
5	<channel id="" value=""></channel>		
6	<channel id="" value=""></channel>		
7	<channel id="" value=""></channel>		
This parameter is igno	ed by BIS U-62xxx-111_ US models.		

Parameter	Field		MSB	LSB
UHF Confi 0x00 in LSI	-	Byte 9 in MSB	<partially Reserved></partially 	0x00
	ts the use	erved according to the table below. r to enable/disable the Choose Nea		
error respo	nse is gei	st One property is disabled (bit = 0 nerated whenever a single-tag read/ d in a multi-tag environment.		
		st One property is enabled (bit = 1) is executed on the tag with the stron		
	BIT	Description		
	0	Reserved*		
	1	<choose nearest="" one=""></choose>		
	2	Reserved*		
	3	Reserved*		
	4	Reserved*		
	5	Reserved*		
	6	Reserved*		
	7	Reserved*		

NOTE

* Leave the default value retrieved through the 0xC1 "Get UHF Controller Configuration" command.

Response from Controller

Parameter Field	MSB	LSB
Overall Length of Response (in words)	0x00	0x06
0xAA in MSB. Command Echo in LSB	0xAA	0xC0
Instance Counter in MSB, Node ID Echo in LSB	<ic></ic>	0x01
Month and Day Timestamp: (March 19 th)	0x03	0x13
Hour and Minute Timestamp: (10:11: AM)	0x0A	0x0B
Seconds Timestamp in MSB: (36 seconds) 0x00 in LSB	0x24	0x00

CBX COMMAND 0XC1: GET UHF CONTROLLER CONFIGURATION

Command 0xC1 - Description

The *Get UHF Controller Configuration Command* is used to retrieve the configuration settings stored in the UHF-Series controller's flash memory. These are the same values that are set with the *Set UHF Controller Configuration Command*.

Command 0xC1 - CBx Example

This example retrieves the stored configuration settings from the flash memory of the UHF controller at Node 01.

Command from Host

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x01
Overall Length of Command (in words)	0x00	0x06
0xAA in MSB. Command ID in LSB: (0x33)	0xAA	0xC1
0x00 in MSB. Node ID in LSB	0x00	0x01
Not Used (default: 0x00, 0x00)	0x00	0x00
Not Used (default: 0x00, 0x00)	0x00	0x00
Not Used (default: 0x00, 0x00)	0x00	0x00

Response from Controller

Parameter Field	MSB	LSB
Overall Length of Response (in words)	0x00	0x0B
0xAA in MSB. Command Echo in LSB	0xAA	0xC1
Instance Counter in MSB. Node ID Echo in LSB	<ic></ic>	0x01
Month and Day Timestamp: (March 19 th)	0x03	0x13
Hour and Minute Timestamp: (10:11: AM)	0x0A	0x0B
Seconds Timestamp in MSB (:36 seconds) Additional Data Length in LSB (in bytes 0x0A)	0x24	0x0A
UHF Configuration Byte 1 in MSB UHF Configuration Byte 2 in LSB These two bytes represent the Reader Output Power (value from 0 to 500 mW).	<byte 1=""></byte>	<byte 2=""></byte>
UHF Configuration Byte 3 in MSB UHF Configuration Byte 4 in LSB	<byte 3=""></byte>	<byte 4=""></byte>
UHF Configuration Byte 5 in MSB UHF Configuration Byte 6 in LSB	<byte 5=""></byte>	<byte 6=""></byte>
UHF Configuration Byte 7 in MSB UHF Configuration Byte 8 in LSB	<byte 7=""></byte>	<byte 8=""></byte>
UHF Configuration Byte 9 in MSB 0x00 in LSB	<byte 9=""></byte>	0x00

CBX COMMAND 0XC2: READ EPC CODE

Command 0xC2 - Description

The *Read EPC Code Command* instructs the controller to retrieve the EPC memory area of a single UHF Class 1 Gen 2 RFID tag memory.

Command 0xC2 - CBx Example

This example instructs the controller at Node 01 to read the EPC memory from a tag. A *Timeout Value* of 2 seconds (0x07D0 = 2000 x one-millisecond increments) is set for the completion of the command.

Command from Host

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x01
Overall Length of Command (in words)	0x00	0x06
0xAA in MSB. Command ID in LSB (<i>0xC2</i>)	0xAA	0xC2
0x00 in MSB. Node ID in LSB	0x00	0x01
Timeout Value	0x07	0xD0
Not Used (0x00, 0x00)	0x00	0x00
Not Used (0x00, 0x00)	0x00	0x00

Response from Controller (Tag Found)

Parameter Field	MSB	LSB
Overall Length of Response (in words)	0x00	0x0C
0xAA in MSB. Command Echo in LSB	0xAA	0xC2
Instance Counter in MSB. Node ID Echo in LSB	<ic></ic>	0x01
Month and Day Timestamp:(March 19 th)	0x03	0x13
Hour and Minute Timestamp: (10:11: AM)	0x0A	0x0B
Seconds Timestamp in MSB: (<i>:36 seconds</i>). Additional Data Length in LSB: (<i>in bytes 0x0C</i>)	0x24	0x0C
EPC (bytes 1 and 2)	0xE0	0x04
EPC (bytes 3 and 4)	0x01	0x00
EPC (bytes 5 and 6)	0x00	0x2E
EPC (bytes 7 and 8)	0xEB	0x34
EPC (bytes 9 and 10)	0x11	0x35
EPC (bytes 11 and 12)	0x16	0xAD

See par. EPC Class 1 Gen 2 Tag Memory Structure in Appendix for details.

2

Response from Controller (Tag Not Found)

Parameter Field	MSB	LSB
Overall Length of Response in LSB (in words)	0x00	0x07
Error Flag in MSB = 0xFF. Error Information Byte in LSB 0xFF in the LSB indicates that a controller-based error occurred. Any other value other than 0xFF indicates that a Gateway/Hub-based error occurred (and identifies the command that was attempted when the error occurred).	0xFF	0xFF
Instance Counter in MSB Node ID Echo in LSB	<ic></ic>	0x01
Month and Day Timestamp:(March 19 th)	0x03	0x13
Hour and Minute Timestamp: (10:11: AM)	0x0A	0x0B
Seconds Timestamp in MSB: (:36 seconds). Additional Data Length in LSB: (0x01 for Error Code)	0x24	0x01
Error Code in MSB (0x07 = Tag Not Found) 0x00 in LSB	0x07	0x00

CBX COMMAND 0XC3: WRITE EPC CODE

Command 0xC3 - Description

The *Write EPC Code Command* instructs the controller to write the EPC memory area of a single UHF Class 1 Gen 2 RFID tag memory.

Command 0xC3 - CBx Example

This example instructs the controller at Node 01 to write the specified bytes in the EPC memory of a tag. A *Timeout Value* of 2 seconds $(0x07D0 = 2000 \times one-millisecond increments)$ is set for the completion of this command.

Command from Host

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x01
Overall Length of Command (in words)	0x00	0x0A
0xAA in MSB. Command ID in LSB (<i>0xC3</i>)	0xAA	0xC3
0x00 in MSB. Node ID in LSB	0x00	0x01
Timeout Value (measured in ms)	0x07	0xD0
EPC Write Data (bytes 1 and 2)	0x48	0x45
EPC Write Data (bytes 3 and 4)	0x4C	0x4C
EPC Write Data (bytes 5 and 6)	0x58	0x45
EPC Write Data (bytes 7 and 8)	0xAB	0x6F
EPC Write Data (byte 9 and 10)	0x4E	0x45
EPC Write Data (byte 11 and 12)	0x4F	0x00

Response from Controller

Parameter Field	MSB	LSB
Overall Length of Response (in words)	0x00	0x06
0xAA in MSB. Command Echo in LSB	0xAA	0xC3
Instance Counter in MSB. Node ID Echo in LSB	<ic></ic>	0x01
Month and Day Timestamp: (March 19 th)	0x03	0x13
Hour and Minute Timestamp: (10:11: AM)	0x0A	0x0B
Seconds Timestamp in MSB (:36 seconds). 0x00 in LSB	0x24	0x00

See par. EPC Class 1 Gen 2 Tag Memory Structure in Appendix for details.

CBX COMMAND 0XC4: MULTI-TAG READ EPC CODE

Command 0xC4 - Description

The *Multi-Tag Read EPC Code Command* is used to retrieve the EPC data from all tags within RF range. A final termination packet is sent when the *Timeout Value* expires.

Command 0xC4 - CBx Example

This example instructs the controller at Node 01 to read the EPC data from each tag in range. A *Timeout Value* of 3 seconds ($0x0BB8 = 3000 \times 1msec$ increments) is set for the completion of the command.

Command from Host

Parameter Field	MSB	LSB
CBx Header in MSB, Node ID in LSB	0xFF	0x01
Overall Length of Command (in words)	0x00	0x06
0xAA in MSB, Command ID in LSB	0xAA	0xC4
0x00 in MSB . Node ID in LSB	0x00	0x01
Timeout Value	0x0B	0xB8
Tag Limit in MSB, 0x00 in LSB	0x64	0x00
Not Used (0x00, 0x00)	0x00	0x00

Response from Controller (for Each Tag Found)

Parameter Field	MSB	LSB
Overall Length of Response (in words)	0x00	0x0C
0xAA in MSB, Command Echo in LSB	0xAA	0xC4
Instance Counter in MSB. Node ID Echo in LSB	<ic></ic>	0x01
Month and Day Timestamp	<month></month>	<day></day>
Hour and Minute Timestamp	<hour></hour>	<min></min>
Seconds Timestamp Additional Data Length (12 additional bytes returned)	<sec></sec>	0x0C
EPC (bytes 1 and 2)	<d1></d1>	<d2></d2>
EPC (bytes 3 and 4)	<d3></d3>	<d4></d4>
EPC (bytes 5 and 6)	<d5></d5>	<d6></d6>
EPC (bytes 7 and 8)	<d7></d7>	<d8></d8>
EPC (bytes 9 and 10)	<d9></d9>	<d10></d10>
EPC (bytes 11 and 12)	<d11></d11>	<d12></d12>

Final Response Packet

Parameter Field	MSB	LSB
Overall Length of Response (in words)	0x00	0x07
0xAA in MSB, 0xFF in LSB	0xAA	0xFF
Instance Counter in MSB. Node ID Echo in LSB	<ic></ic>	0x01
Month and Day Timestamp	<month></month>	<day></day>
Hour and Minute Timestamp	<hour></hour>	<min></min>
Seconds Timestamp Additional Data Length (2 bytes: "Number of Tags" and "Status")	<sec></sec>	0x02
Number of Tags Found in MSB Status in LSB. 0x00 = operation completed successfully, 0x07 = Read Tag ID failed / Tag Not Found.	<# of tags found>	<0x00

See par. EPC Class 1 Gen 2 Tag Memory Structure in Appendix for details.

A **REFERENCES**

EPC CLASS 1 GEN 2 TAG MEMORY STRUCTURE

The memory in Balluff's EPC Class 1 Gen 2 tag *UHF-G2-525xx* is organized in **three** areas:

Name	Description	Size
EPC	EPC memory according to the EPCglobal Standard	96-bit (12 bytes)
TID	Read Only Unique identifier	64-bits (8 bytes)
USER	User memory	512-bit (64 bytes)

EPC

EPC is a numbering scheme that allows assignment of a unique identifier to any physical object. It can be regarded as the next generation of Universal Product Code (UPC), which is used on most products today.

EPC enables the means to assign a unique identifier to each item, thus allowing every item to be uniquely identified.

To have more details on the structure of the EPC memory area please consult:

• EPC Radio-Frequency Identity Protocols Class-1 Generation-2 UHF RFID Protocol for Communications at 860 Mhz – 960 Mhz, Version 1.1.0 (December 17, 2005)

In our UHF-G2-525xx tag this memory area is pre-programmed with the TID unique identifier and padded with zeroes. The user can change that but it's important to note that only tags with **different** EPC codes will be discriminated in a multi-tag reading environment.

TID

This is a read-only area that holds a unique tag identifier number. This area can be accessed using the common CBx Read ID commands.

USER

This is the normal data area that can be accessed using the common CBx Read and Write commands.

The fastest access memory is the EPC area. For applications where speed is important the use of this memory is recommended.

COMMAND MAPPING

A command is initiated by a host PC or *Programmable Logic Controller* (PLC) and is distributed to the Gateway/Hub over an Ethernet connection. Once issued, the command is then executed directly by the Gateway/Hub or is otherwise routed to the appropriate RFID controller (specified by its numerical "*Node ID*" value, for which there are up to16).

In general, there are two types of commands that can be issued:

- **Controller Commands** commands intended for one of the attached RFID controllers. "*Read Data*" and "*Write Data*" are two common controller commands.
- Gateway/Hub Commands commands intended for the Gateway/Hub itself. These commands query the Gateway/Hub for information or instruct the it to perform a task. The commands "Get Node Status List" and "Set Notification Mask" are examples of Gateway/Hub commands

Mapping Commands & Response Data

In order to properly distribute RFID commands to the intended RFID controller (and to correctly return the controller's response to the host), the Gateway separates input data (*Commands*) from output data (*Responses*) by assigning each controller a *Node Input Page* and a *Node Output Page*. Each "*page*" is actually a small block of memory used to temporarily hold command or response data.

Node Input Pages

The Gateway/Hub assigns each controller a **Node Input Page** that corresponds numerically to its assigned Node ID value. Thus, commands directed to the controller at Node 01, for example, will be written to Node Input Page 01. Node Input Pages hold Gateway and controller-bound command data generated by the host.

Nodes 01 thru 16 are assigned Node Input Pages 01 thru 16 respectively. The Gateway/Hub, itself, is assigned Node Input Page 32.

Node Output Pages

The Gateway/Hub also assigns each controller a **Node Output Page** used to hold hostbound response data generated by the Gateway or one of the RFID controllers after executing a command.

A controller's numeric Node Output Page value is always **32** page values greater than its corresponding Node Input Page value. Therefore, response data from the controller at Node 01, for example, will be written to Node Output Page 33 (as Node Output Page 33 is 32 page values greater than its corresponding Node Input Page of 01).

Nodes 01 thru 16 are assigned Node Output Pages 33 thru 48 respectively. The Gateway/Hub is assigned Node Output Page 64.

	Α
_	

Product	Node ID	Node Input Page	Node Output Page
	Node 01	Node Input Page 01	Node Output Page 33
	Node 02	Node Input Page 02	Node Output Page 34
	Node 03	Node Input Page 03	Node Output Page 35
	Node 04	Node Input Page 04	Node Output Page 36
	Node 05	Node Input Page 05	Node Output Page 37
	Node 06	Node Input Page 06	Node Output Page 38
	Node 07	Node Input Page 07	Node Output Page 39
-485 Subnet16™ Controllers	Node 08	Node Input Page 08	Node Output Page 40
-485 Subriet 16*** Controllers	Node 09	Node Input Page 09	Node Output Page 41
	Node 10	Node Input Page 10	Node Output Page 42
	Node 11	Node Input Page 11	Node Output Page 43
	Node 12	Node Input Page 12	Node Output Page 44
	Node 13	Node Input Page 13	Node Output Page 45
	Node 14	Node Input Page 14	Node Output Page 46
	Node 15	Node Input Page 15	Node Output Page 47
	Node 16	Node Input Page 16	Node Output Page 48
Gateway/Hub	Node 32	Node Input Page 32	Node Output Page 64

Balluff GmbH Schurwaldstraße 9 73765 Neuhausen a.d.F. Germany Phone +49 7158 173-0 Fax +49 7158 5010 balluff@balluff.de