BALLUFF

BIS V-6111 CC-Link

Technical Description, User's Guide

www.balluff.com

1	User Instructions	4
	1.1 About this Manual	4
	1.2 Typographical Conventions	4
	1.3 Symbols	4
	1.4 Abbreviations	4
2	Safety	5
	2.1 Intended Use	5
	2.2 General Safety Notes	5
	2.3 Meaning of Warning Notes	5
3	Basic Knowledge	6
	3.1 Function Principle of Identification Systems	6
	3.2 Product Description	6
	3.3 Control Function	7
	3.4 Data Integrity	7
	3.5 Read/write Heads H1H4	7
	3.6 CC-Link	7
	3.7 IO-Link	8
	3.8 IO-Link Communication Mode	8
	3.9 USB Port	8
4	Installation	9
	4.1 Processor Unit Scope of Delivery	9
	4.2 Processor Unit Installation	9
	4.3 Electrical Connection	10
5	Technical Data	12
6	Startup	14
	6.1 CC-Link 6.2 Project Configuration on the Device	14
	6.2 Project Configuration on the Device6.3 Project Configuration Using the CC-Link Tool	16 16
	6.4 Configuration	18
	6.5 RX/RY Point Buffer	22
	6.6 IO-Link MTA	26
7	Device Function	30
-	7.1 Function Principle of the BIS V-6111	30
	7.2 Process Data Buffer	31
	7.3 Function Indicator	42
	7.4 Examples	44
	7.5 Display	52
	Appendix	59
	Index	61

1 User Instructions

1.1	About this Manual	This manual describes the processor unit for BIS V-6111 Identification Systems and startup instructions for immediate operation.		
1.2	Typographical Conventions	The following conventions are used in this manual:		
	Enumerations	Enumerations are shown as a list with an en-dash. – Entry 1. – Entry 2.		
	Actions	 Action instructions are indicated by a preceding triangle. The result of an action is indicated by an arrow. ▶ Action instruction 1. ⇒ Action result. ▶ Action instruction 2. 		
	Syntax	 Numbers: Decimal numbers are shown without additional indicators (e.g. 123), Hexadecimal numbers are shown with the additional indicator _{hex} (e.g. 00_{hex}). 		
		Parameters: Parameters are shown in italics (e.g. <i>CRC_16</i>).		
		Directory paths: References to paths where data is stored or to be saved are shown in small caps (e.g. Project:\ Data Types\User Defined).		
		Control characters: Control characters for sending are set in angle brackets (e.g. <ack>).</ack>		
		ASCII code: Characters transmitted in ASCII code are set in apostrophes (e.g. 'L').		
1.3	Symbols	A Caution! This symbol indicates a safety instruction that must be followed without exception.		
		i Note, tip This symbol indicates general notes.		
1.4	Abbreviations	BISBalluff Identification SystemCC-LinkControl and Communication LinkCLPACC-Link Partner AssociationCPCode PresentCRCCyclic Redundancy CheckCSPCC-Link System ProfileDIDDevice IDEEPROMElectrical Erasable and Programmable ROMEMCElectromagnetic compatibilityFCCFederal Communications CommissionFEFunction groundLF CRLine Feed with Carriage ReturnMACMedia Access Controln.c.not connectedPCPersonal ComputerPLCProgrammable Logic ControllerTagData carriersUIDUnique IdentifierVIDVendor ID		

- Tag UID VID

Safety

2.1	Intended Use	The BIS V-6111 processor unit is a component of the BIS V Identification System. Within the identification system it is used for linking to a host computer (PLC, PC). It may be used only for this purpose in an industrial environment corresponding to Class A of the EMC Law.
		This description applies to processor units of the following series:
		– BIS V-6111-073-C003

- BIS V-6111-073-C103

2.2 General Safety Installation and startup Notes Installation and startup are

Installation and startup are to be performed by trained technical personnel only. Any damage resulting from unauthorized manipulation or improper use voids warranty and liability claims against the manufacturer.

When connecting the processor unit to an external controller, observe proper selection and polarity of the connection as well as the power supply (see "Processor Unit Installation" on page 9).

The processor unit may only be used with an approved power supply (see "Technical Data" on page 12).

This product was developed and manufactured in accordance with the applicable European directives. CE conformity has been verified.

All approvals and certifications are no longer valid if:

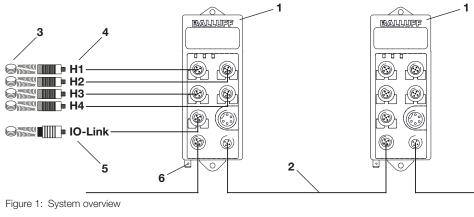
- Components are used that are not part of the BIS V Identification System,
- Components are used that have not been explicitly approved by Balluff.

Operation and testing

The operator is responsible for ensuring that local safety regulations are observed. In the event of defects and non-correctable faults in the identification system, take the system out of service and secure it from unauthorized use.

2.3 Meaning of Warning Notes

The pictogram used with the word "Caution" warns of a situation that could harm someone's health or damage equipment. Failure to observe these warning notes may result in injury or damage to equipment.


Always observe the described measures for preventing this danger.

Basic Knowledge

3.1 Function Principle of Identification Systems The BIS V Identification System is classified as a non-contacting system with read and write function, which not only allows it to convey information programmed permanently in the data carrier, but also to collect and pass on current information.

The main components of the BIS V Identification System are:

- Processor unit
- Read/write heads,
- Data carriers.

- 1 BIS V
- 2 CC-Link interface
- 3 Data carriers (max. 1 per R/W head)
- 4 Read/write heads H1...H4
- 5 Service/IO-Link
- 6 Function ground

The main areas of application are:

- In production for controlling material flow (e.g. for model-specific processes, conveying systems that transport workpieces, acquisition of safety-relevant data)
- In warehousing for monitoring material movement
- Transporting and conveying

3.2 Product Description Processor Unit BIS V-6111:

- Metal housing
- Round connector terminations
- Four read/write heads can be connected
- 1 × IO-Link module or standard input port can be connected
- Power for the system components provided by the processor unit
- Power for the data carrier provided by the read/write heads via carrier signal
- USB port
- CC-Link In and CC-Link Out
- Display with keys for startup and configuration
- Control displays

Basic Knowledge

3.3	Control Function	 The processor unit is the link between data carrier and controlling system. It manages two-way data transfer between data carrier and R/W head and provides buffer storage. The processor unit uses the read/write head to write data from the controlling system to the data carrier or reads the data from the carrier and makes it available to the controlling system. Controlling systems may be the following: A control computer (e.g. industrial PC). A PLC.
3.4	Data Integrity	In order to increase data integrity, data transfer between the data carrier and processor unit and the storage device must be monitored using a check procedure. A CRC_16 data check can be enabled for this via parameter configuration. With the CRC_16 data check, a check code that allows the validity to be checked at any time is written to the data carrier.
		 A CRC_16 data check provides the following advantages: Data integrity even during the non-active phase (data carrier outside the R/W head). Shorter read time – page is read once.
3.5	Read/write Heads H1H4	For BIS V-6111-073-C003, read/write heads of the BIS VM-3 and BIS VL-3 series can be connected to terminals H1H4. BIS V-6111-073-C103 also supports read/write heads of the BIS C-3 series (adapter required). Connecting the read/write heads only using shielded cables is recommended for compliance with the EMC Directives.
		The maximum cable length for read/write heads of the BIS VM-3 and BIS VL-3 series is 50 m. Depending on the system design, the cable length for the BIS C-3 series is set to 1 m, 5 m or 10 m plus adapter.
3.6	CC-Link	Open bus system for process and field communication. Automation devices, such as PLCs, PCs, operating and observation devices, sensors or actuators, can communicate using this bus system.

Basic Knowledge

3.7	IO-Link	IO-Link is defined as a standardized point-to-point connection between sensors/actuators and the I/O module. An IO-Link sensor/actuator can send additional communication data (e.g. diagnostics signals) in addition to the binary process signals over the IO-Link interface.
		 Compatibility with standard I/O: IO-Link sensors/actuators can be connected to existing I/O modules. Sensors/actuators which are not IO-Link-capable can be connected to an IO-Link module. Standard sensor/actuator cables can be used.
		 Key technical data: Serial point-to-point connection. Communication as add-on to standard I/O. Standard I/O connection technology, unshielded, 20 m cable length. Communication using 24 V pulse modulation, standard UART protocol.
3.8	IO-Link Communication Mode	Process data (cyclical): The size of the IO-Link input and output buffer is always the same and can be adjusted from 2 bytes to 32 bytes in 2-byte increments. If 0 bytes is selected as the size, the IO-Link port is disabled.
		Deterministic time behavior: – Typically 2 ms cycle time for 16 bits of process data and 38.4 kbaud transmission rate.
		Service data (diagnostics, parameters): – Parallel and non-reactive to process data
	Standard I/O mode	 Startup parameters can be configured using communication, then Binary switching signal
3.9	USB Port	The device can be connected to a PC's USB interface using the "Service/IO-Link" jack and then behaves like a USB stick (see 4.3). This allows access to the internal memory, where the manual the CSP+ file and a communications driver for service functions are saved, as well as a program for project configuration. In addition, the BIS V has to be connected to an external voltage source. The communication driver can be installed as needed, but is not required for the USB interface and BIS V to function.

Visit www.balluff.com for more information on available software and accessories.

Installation

4.1 Processor Unit Scope of Delivery

- Included in the scope of delivery:
- BIS V-6111
- 5 × closure cap
- Safety Notes

i Note

Visit www.balluff.com for more information on available software and accessories.

4.2 Processor Unit Installation

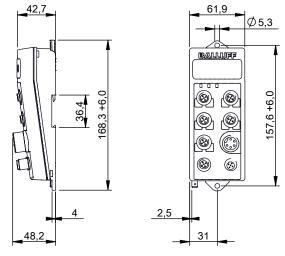


Figure 2: Mechanical connection (dimensions in mm)

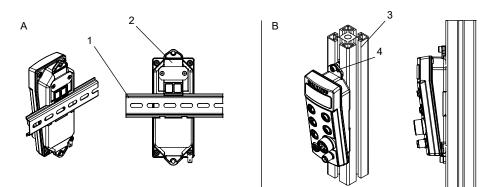


Figure 3: Installation examples (A: attachment to DIN rails, B: attachment to T-slotted framing)

- 1 DIN rail
- 2 Fastening

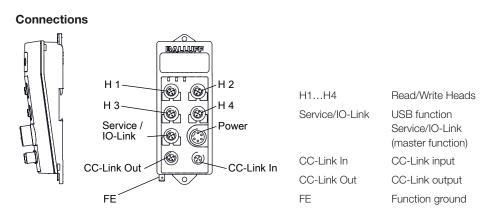
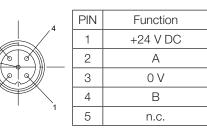
- **3** T-slotted framing
- 4 Holder for screw mounting
- Select a suitable installation position.
- Secure the processor unit using two M5 screws (strength category 8.8, lightly oiled, tightening torque M = 5.5 Nm).

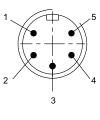
Installation

4.3 Electrical Connection

n Note

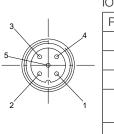
Make the ground connection either directly or using an RC combination to ground.


Figure 4: Electrical connection

H1...H4

5-pin M12 socket, A-coded


Power 5-pin 7/8" plug

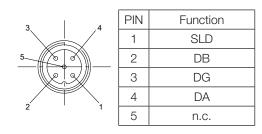
PIN	Function
1	0 V
2	0 V
3	FE
4	+24 V DC
5	n.c.

IO-Link / Service

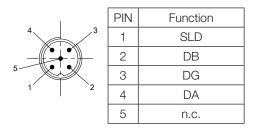
5-pin M12 socket, A-coded

IO-Link		
PIN	Function	
1	VP (+24 V DC)	
2	n.c.	
3	0 V	
4	Q/C (IO-Link) or digital input	
5	n.c.	

Service/USB		
PIN	Function	
1	n.c.	
2	USB-	
3	0 V	
4	n.c.	
5	USB+	

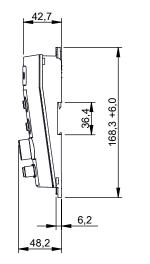


Damage to the USB interface


Standard USB cables can damage the USB interface on the PC.

 Use the cable BCC0CR2 for the use of the Balluff Software BIS Cockpit or UHF Manager on the Port IO-Link / Service. Installation

CC-Link Out 5-pin M12 socket, A-coded



Technical Data

5

Dimensions

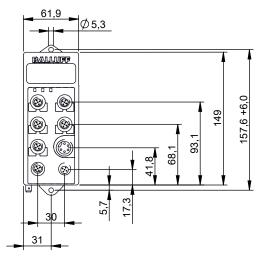


Figure 5: Dimensions in mm

Mechanical data

Housing material	Zinc die-cast housing
H1H4	V _S 24 V DC - 5-pin M12 female, A-coded
Service/IO-Link (master function)	5-pin M12 socket, A-coded
Power	5-pin 7/8" plug
CC-Link Out	5-pin M12 socket, A-coded
CC-Link In	5-pin M12 plug, A-coded
Degree of protection	IP 65 (with connectors)
Weight	800 g

Electrical data

Supply voltage V_s	24 V DC ±20 % LPS Class 2
Residual ripple	≤10%
Current consumption	≤2 A
Application interfaces	CC-Link, IO-Link

Application interfaces

IO-Link port M12, A-coded, female

Pin

Pin 1	+24 V DC, 1 A	
Pin 2	USB+	
Pin 3	3 0 V / GND	
Pin 4	Pin 4 IO-Link / input max. 500 mA	
Pin 5	in 5 USB-	

5 Technical Data

Operating conditions

Ambient temperature	0 °C+60 °C
Storage temperature	0 °C+60 °C
EMC (BIS V-6111-073-C003)	
- IEC EN 61000-6-2	
- IEC EN 61000-4-2/4/5/6	- Severity level 2A/3B/2B/3A
- IEC EN 61000-4-3	
80 MHz – 1000 MHz	- Severity level 3A
1400 MHz – 2000 MHz	 Severity level 3A
2000 MHz – 2700 MHz	- Severity level 2A
- Emission as per EN 55016-2-3	– EN 61000-6-4
Vibration/shock	EN 60068 Part 2-6/27/29

6	Startup	
6.1	CC-Link	 The BIS V-6111 processor unit and the controlling system communicate via CC-Link. The CC-Link system consists of the following components: Bus master Bus modules/slaves (here, the BIS V-6111 processor unit)
		Important note for implementation using PLCs There are controllers where the CC-Link data range is not transmitted synchronously with the update of the input/output map. If more than 2 bytes of data are transmitted, a mechanism must be used that guarantees that the data in the PLC and the data in the BIS V is always the same!
		Synchronous data transmission as a setting on the master In this method, the bus master ensures that all of the data necessary for the respec- tive slave is transmitted together. Usually a special software function must be used in the PLC that also controls the access between the PLC and bus master so that all data is always transmitted together.
	Device data	In order to configure the parameters for the bus master correctly based on type, the device master data for the BIS V-6111 processor unit are included in the form of a CSP+ file. The CSP+ file can be found in the processor unit's internal memory and can be retrieved from there via the USB interface.
	Station address	Each device on a CC-Link line section must have a unique station address. Therefore, before being used on the bus for the first time, it must be configured individually using the display or using the CC-Link tool.
	Process data	BIS V-6111 implements a CC-Link Remote Device Station. Depending on the project configura- tion, the protocol used is compatible with CC-Link 1.0/1.1 or CC-Link 2.0.
		CC-Link divides the cyclical process data buffer into words (16-bit, WW for output data and WR for input data) and into points (1 bit, referred to in the CC-Link specification as RY for output data and RX for input data). The number of points and words depends on how many station addresses the device occupies. Between 1 and 4 station addresses are allowed. In addition, CC-Link 2.0 or higher allows you to use more words and points by using the extended cycles function. In doing so, the process data size can be two, four or eight times as large as when using CC-Link 1.0 or 1.1.
		Only words are used for the process data of the read/write heads. The IO-Link port likewise uses words to transmit the IO-Link data in IO-Link operation. However, points are used for transmit-ting acyclical IO-Link data and for status data.
		As a word is assigned to a head or to the IO-Link port either entirely or not at all, the size of the process data buffer is always an even number in bytes. Zero is used as the size for a head in order to disable the corresponding head. The size zero for IO-Link switches off the IO-Link port.
		The size of the process data buffer for each head and for the IO-Link port is identical for input and output data.

Startup

```
Baud rate
```

BIS V-6111 supports all 5 CC-Link baud rates. They must be set identically on the master and slave.

Profile

BIS V-6111 allows you to use profiles for simplified project configuration. Profiles 0 to 8 are prepared configurations of the process data buffer. Profile 9 enables the device to be given any desired project configuration.

Profile	Process data c	Assigned stations	Extended cycles	
0	Head 1 to Head 4: IO-Link port: CC-Link 1.1 compatible!	4 words each Disabled	4	-
1	Head 1 Head 2 to Head 4: IO-Link port: CC-Link 1.1 compatible!	16 words Disabled Disabled	4	-
2	Head 1 and Head 2: Head 3 and Head 4: IO-Link port:	16 words each Disabled. Disabled	4	2
3	Head 1 to Head 3: Head 4: IO-Link port:	16 words each Disabled Disabled	3	4
4	Head 1 to Head 4: IO-Link port:	16 words each Disabled	4	4
5	Head 1 Head 2 to Head 4: IO-Link port:	16 words Disabled 8 words	4	2
6	Head 1 and Head 2: Head 3 and Head 4: IO-Link port:	16 words each Disabled 8 words	3	4
7	Head 1 to Head 3: Head 4: IO-Link port:	16 words each Disabled 8 words	4	4
8	Head 1 to Head 4: IO-Link port:	13 words each 8 words	4	4
9	Use the settings configured face.	I via the service inter-		

Startup

	Project configuration settings	A complete project configuration of BIS V-6111 includes these settings: - Station address - Baud rate - Profile - Assigned station addresses - Extended cycles - Process data size for head 1 - Process data size for head 2 - Process data size for head 3 - Process data size for head 4 - Process data size of the IO-Link port Where profiles 0 to 8 define the following parameters implicitly. The project configuration can take place using the display. Then, only the parameters of station address, baud rate and profile are available. Detailed configurations can take place via the service interface using the CC-Link tool
6.2	Project Configuration on the Device	The display can be used to configure the station address, the baud rate and the profile. After the configuration, the device carries out a reset to apply the values. If a profile from 0 to 8 is selected, the parameters for assigned station addresses, extended cycles and the process data sizes are defined automatically. For Profile 9, the values are used that were configured during the last project configuration using the CC-Link tool.
6.3	Project Configuration Using the CC-Link Tool	The project configuration can be carried out using the CC-Link tool. The tool is already in the device's internal memory. If the BIS V-6111 is connected to a PC, the internal memory is detected as a drive, like a USB stick. To use the CC-Link tool, a driver must be installed on the PC that allows the service interface of the BIS V-6111 to be addressed as a virtual COM port. The driver is available as a 32-bit version in the Driver/x86 directory and as a 64-bit version in the Driver/x64 directory. It functions with Windows XP, Vista, 7 and 8. Administrator rights are required for installed, the PC has an additional virtual COM port as soon as the BIS V-6111 is connected to it via USB. The CC-Link tool is in the Tools directory. Ideally, it should be copied to the PC's hard drive. No installation is required. However, the CC-Link tool requires Microsoft.net Framework 4. You may have to install it from the Microsoft website.

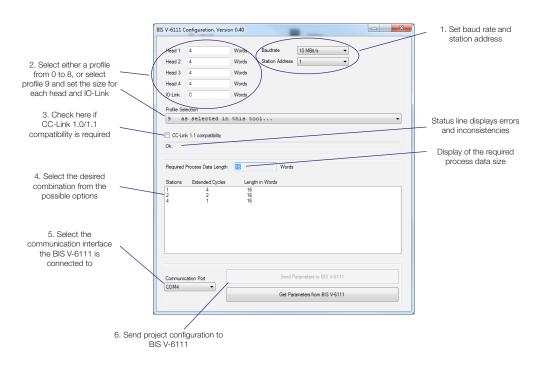


Figure 6: Project configuration

The CC-Link tool can also read back the values configured on the device. To do so, select the COM port and read out the data using the "Get Parameters from BIS V-6111" button.

Startup

```
6.4 Configuration
```

For operating BIS V, there are also additional parameters transmitted as a message in the CC-Link process data (see Section 7). The individual parameters are described here.

Com- mand	Byte	Bit	Meaning		
Set	1	0–2	Keyboard/LCD: read only	0/1:	Disable/enable
device parame- ters		3–7	Device LEDs off	0/1:	Disable/enable
Set head	1	0	CRC check	0/1:	Disable/enable
parame-		1	Dynamic mode	0/1:	Disable/enable
ters		2	Type serial number	0/1:	Disable/enable
		3	Slow tag detection	0/1:	Disable/enable
		4	Low antenna power	0/1:	Disable/enable
		5	Head LEDs off	0/1:	Disable/enable
	2	0–7	-7 Tag type	0:	All data carriers are detected
				10:	Mifare
				11:	ISO 15693
				20:	EM4x02
				21:	Hitag1
				22:	Hitag2
				30:	BIS C 32 byte
				31:	BIS C 64 byte
	3	0–2	UID compare count	1–7:	Number of repetitions

Description of individual parameters

Keyboard/LCD:If this function is enabled, then the CC-Link station address, profile and baud rate can no longer
be changed via the display.

Device LEDs off If this function is enabled, then the read/write head LEDs on the BIS V-6111 processor unit are shut off after 30 min. The parameters for this function are configured in the header module.

CRC check

The CRC check is a procedure for determining a check value for data in order to be able to recognize transmission errors. If the CRC check is activated, an error message is sent when a CRC error is detected.

Checksum

M and L system:

The checksum is written to the data carrier as 2 bytes of information. 2 bytes per block are lost. This leaves 14 bytes per block available. The usable number of bytes can be found in the following table.

C system:

The checksum is written to the data carrier as 2 bytes of information per page. 2 bytes per page are lost, i.e. the page size is 30 bytes or 62 bytes depending on the data carrier type.

The number of usable bytes thus decreases when using the checksum.

Balluff data carrier type	Memory capacity	Usable bytes for CRC_16
BIS M-1 01	752 bytes	658 bytes
BIS M-1 02	2000 bytes	1750 bytes
BIS M-1 03	112 bytes	98 bytes
BIS M-1 04	256 bytes	224 bytes
BIS M-1 05	224 bytes	196 bytes
BIS M-1 06	288 bytes	252 bytes
BIS M-107	992 bytes	868 bytes
BIS M-1 08	160 bytes	140 bytes
BIS M-1 09	32 bytes	28 bytes
BIS M-1 10	736 bytes	644 bytes
BIS M-1 11	8192 bytes	7168 bytes
BIS M-1 13	32786 bytes	28672 bytes
BIS M-1 14	65536 bytes	57344 bytes
BIS M-1 15	131072 bytes	114688 bytes
BIS M-1 20	8192 bytes	7168 bytes
BIS L-1 01	192 bytes	168 bytes
BIS L-2 03	5 bytes (read-only)	_
BIS L-1 05	192 bytes	168 bytes
BIS C-1 04	511 bytes	450 bytes
BIS C-1 05	1023 bytes	930 bytes
BIS C-1 11	2047 bytes	1922 bytes
BIS C-1 32	8192 bytes	7936 bytes

Initializing

To use the CRC check, the data carrier has to be initialized. Initialization of the data carrier is accomplished in the output buffer using the command designator 12_{hex} . If the data carrier does not contain the correct CRC, the processor unit sets an error message in the input buffer (see Example 7 on page 50).

Data carriers as shipped from the factory can be written immediately with a checksum, since all data is set to 0.

Dynamic mode

As soon as the *Dynamic mode* function is enabled, the processor unit accepts the read/write job from the controlling system and stores it, regardless of whether a data carrier is in the active zone of the R/W head or not. If a data carrier enters the active range of the R/W head, the stored job is run.

i	Note	

To achieve the read times specified on on page 42 in dynamic operation, the "Tag type" parameter has to be set to "BIS C 32 byte" or "BIS C 64 byte" on the respective head.

Type serial number If this function is enabled, the type of the read/write head as well as the data carrier type and serial number (UID = Unique Identifier) for the data carrier are output when CP occurs. The length of the serial number can vary depending on the type of data carrier. To be able to determine the length, the data is preceded by a length field.

BIS C data carriers do not have a UID value.

Data for- mat	1 byte	1 byte				1 byte	4 bytes or 8 bytes
Meaning	Length (number of bytes inclu- ding length)	Read/write head type			Data carrier type	UID (Mifare or Hitag 1) or UID (ISO 15693)	
		/			\nearrow		
	BIS VM-3001-S4		BIS VL-3_	/L-3001-S4 BIS		C-3	
	03	02 01					

Slow tag detection	For this option, the antenna on the read/write head is switched on for data carrier detection only every 200 ms. The parameters for this function are configured in the respective read/write head module.
Low antenna power	Transmitting power is reduced when using this parameter. The parameters for this function are configured in the respective read/write head module and is reserved for future read/write heads.
Head LEDs off	This parameter switches off the LEDs on the respective read/write head. The parameters for this function are configured in the respective read/write head module.

Tag type

The following data carriers are available for the BIS V-6111 processor unit.

Mifare data carriers (for read/write heads BIS VM):

Balluff data carrier type	Manufacturer	Description	Memory capacity	Memory type
BIS M-1 01	NXP	Mifare Classic	752 bytes	EEPROM
BIS M-1 10	NXP	Mifare Classic	736 bytes	EEPROM

ISO 15693 data carriers (for read/write heads BIS VM):

Balluff data carrier type	Manufacturer	Description	Memory capacity	Memory type
BIS M-1 02	Fujitsu	MB89R118	2000 bytes	FRAM
BIS M-1 03	NXP	SL2ICS20	112 bytes	EEPROM
BIS M-1 04 *	Texas Instruments	TAG-IT Plus	256 bytes	EEPROM
BIS M-1 05 *	Infineon	SRF55V02P	224 bytes	EEPROM
BIS M-1 06 *	EM	EM4135	288 bytes	EEPROM
BIS M-1 07	Infineon	SRF55V10P	992 bytes	EEPROM
BIS M-1 08 *	NXP	SL2ICS530	160 bytes	EEPROM
BIS M-1 09 *	NXP	SL2ICS500	32 bytes	EEPROM
BIS M-1 11	Balluff	BIS M-1	8192 bytes	FRAM
BIS M-1 13	Balluff	BIS M-1	32768 bytes	FRAM
BIS M-1 14	Balluff	BIS M-1	65536 bytes	FRAM
BIS M-1 15	Balluff	BIS M-1	161072 bytes	FRAM
BIS M-1 20	Fujitsu	MB89R112	8192 bytes	FRAM

* On request

For read/write heads BIS VL:

Balluff data carrier type	Manufacturer	Description	Memory capacity	Memory type
BIS L-1 01	NXP	Hitag1	192 bytes	EEPROM
BIS L-2 03	EM	EM4x02	5 bytes (read-only)	_
BIS L-1 05	NXP	HitagS	192 bytes	EEPROM

For read/write heads BIS C (with adapter):

Balluff data carrier type	Manufacturer	Memory capacity	Memory type	Memory organization
BIS C-1 04	Balluff	511 bytes	EEPROM	32-byte blocks
BIS C-1 05	Balluff	1023 bytes	EEPROM	32-byte blocks
BIS C-1 11	Balluff	2047 bytes	EEPROM	64-byte blocks
BIS C-1 32	Balluff	8192 bytes	FRAM	64-byte blocks

The data carriers contain additional memory ranges for configuration and protected data. These ranges cannot be processed using the BIS V-6111 processor unit.

Startup

UID Compare	This parameter specifies how often the 5-byte ID of a BIS L-203 data carrier is read in and
Count	compared before the data carrier is shown as detected. This value is set to "2" by default. For
	highly dynamic applications, this value can be set to "1".

6.5 RX/RY Point
BufferIO-Link communication is based on the BAP-05028-J specification. The differences result from
the fact that BIS V-6111 has only one IO-Link port.

CC-Link points are used to configure the IO-Link port and the bit header for the read/write head.

1 read/write head without I/O-Link

Slave -> Master		Master -> Slave		
RXm0RXm7	Bit header 1	RYm0RYm7	Bit header 1	

m = station address from the master

2 read/write heads without I/O-Link

Slave -> Master		Master -> Slave	
RXm0RXm7	Bit header 1	RYm0RYm7	Bit header 1
RXm8RXmF	Bit header 2	RYm8RYmF	Bit header 2

m = station address from the master

3 read/write heads without I/O-Link

Slave -> Master		Master -> Slave	
RXm0RXm7	Bit header 1	RYm0RYm7	Bit header 1
RXm8RXmF	Bit header 2	RYm8RYmF	Bit header 2
RX(m+1)0RX(m+1)7	Bit header 3	RY(m+1)0RY(m+1)7	Bit header 3

m = station address from the master

4 read/write heads without I/O-Link

Slave -> Master		Master -> Slave		
RXm0RXm7	Bit header 1	RYm0RYm7	Bit header 1	
RXm8RXmF	Bit header 2	RYm8RYmF	Bit header 2	
RX(m+1)0RX(m+1)7	Bit header 3	RY(m+1)0RY(m+1)7	Bit header 3	
RX(m+1)8RX(m+1)F	Bit header 4	RY(m+1)8RY(m+1)F	Bit header 4	

m = station address from the master

Startup

RX/RY Point Buffer (continued)

2 read/write heads with I/O-Link

Slave -> Master		Master -> Slave		
RXm0	Input pin 4	RYm0	Output pin 4	
RXm1RXmF	Not used	RYm1RYmF	Not used	
RX(m+1)0	Diagnostic pin 4	RY(m+1)0	Port direction	
RX(m+1)1RX(m+1)F	Not used	RY(m+1)1RY(m+1)F	Not used	
RX(m+2)0	Diagnostic pin 1			
RX(m+2)1RX(m+2)F	Not used	RY(m+2)1RY(m+2)F	Not used	
RX(m+3)0	IO-Link port valid	RY(m+3)0	IO-Link port enable	
RX(m+3)1RX(m+3)7	Not used	RY(m+3)1RY(m+3)F	Not used	
RX(m+3)8	IO-Link event flag	RY(m+3)8	IO-Link event clear	
RX(m+3)9RX(m+3)F	Not used	RY(m+3)9RY(m+3)F	Not used	
RX(m+4)0RX(m+4)7	Bit header 1	RY(m+4)0RY(m+4)7	Bit header 1	
RX(m+4)8RX(m+4)F	Bit header 2	RY(m+4)8RY(m+4)F	Bit header 2	

m = station address from the master

4 read/write heads with I/O-Link

Slave -> Master		Master -> Slave	
RXm0	Input pin 4	RYm0	Output pin 4
RXm1RXmF	Not used	RYm1RYmF	Not used
RX(m+1)0	Diagnostic pin 4	RY(m+1)0	Port direction
RX(m+1)1RX(m+1)F	Not used	RY(m+1)1RY(m+1)F	Not used
RX(m+2)0	Diagnostic pin 1		
RX(m+2)1RX(m+2)F	Not used	RY(m+2)1RY(m+2)F	Not used
RX(m+3)0	IO-Link port valid	RY(m+3)0	IO-Link port enable
RX(m+3)1RX(m+3)7	Not used	RY(m+3)1RY(m+3)F	Not used
RX(m+3)8	IO-Link event flag	RY(m+3)8	IO-Link event clear
RX(m+3)9RX(m+3)F	Not used	RY(m+3)9RY(m+3)F	Not used
RX(m+4)0RX(m+4)7	Bit header 1	RY(m+4)0RY(m+4)7	Bit header 1
RX(m+4)8RX(m+4)F	Bit header 2	RY(m+4)8RY(m+4)F	Bit header 2
RX(m+5)0RX(m+5)7	Bit header 3	RY(m+5)0RY(m+5)7	Bit header 3
RX(m+5)8RX(m+5)F	Bit header 4	RY(m+5)8RY(m+5)F	Bit header 4

m = station address from the master

Startup

RX/RY Point Buffer (continued)

Buffer size depending on the assigned stations and the extended cyclic setting.

	Extended cycles				
	Single	Double	Quadruple	Eightfold	
Assigns 1 station	32 points 4 words	32 points 8 words	64 points 16 words	128 points 32 words Profile(0/1)	
Assigns 2 stations	64 points 8 words	96 points 16 words	192 points 32 words	384 points 64 words	
Assigns 3 stations	96 points 12 words	160 points 24 words	320 points 48 words Profile(3/6)	640 points 96 words	
Assigns 4 stations	128 points 16 words Profile(0/1)	224 points 32 words Profile(2/5)	448 points 64 words Profile(4/7/8)	896 points 128 words	

For the meaning of the individual points:

Input pin 4

If Pin 4 is configured as the input, this bit shows the status of the input.

Diagnostic pin 4

Pin 4 error. Short-circuit or overcurrent.

Port direction

If Pin 4 is operated in SIO mode, this bit defines whether it is the input (0).

Diagnostic pin 1

Pin 1 (supply voltage) error. Short-circuit or overcurrent.

IO-Link port valid

This bit is 1 if IO-Link communication with an IO-Link device is in progress and the device has not set the PDinvalid flag.

IO-Link port enabled

Controls whether the port works in IO-Link mode (1) or in SIO mode (0).

IO-Link event flag

The connected IO-Link device signals an event. When all pending events have been retrieved using the message transfer function, the bit is deleted automatically.

IO-Link event clear

If this bit is set to 1, all pending events in the IO-Link device are deleted. As long as the bit remains at 1, new events are deleted immediately also.

Bit header for read/write heads

Control and status bits for heads 1...4.

The last 16 points are reserved for the system area. The implementation is in accordance with CC-Link specifications BAP-05026-J and BAP-05028-J.

Startup

RX/RY Point Buffer (continued)

	Slave -> Master	Master -> Slave	
RX(m+n)0		RY(m+n)0	
RX(m+n)1	Not used	RY(m+n)1	
RX(m+n)2		RY(m+n)2	
RX(m+n)3		RY(m+n)3	Not used
RX(m+n)4		RY(m+n)4	Not used
RX(m+n)5	Message transmission size	RY(m+n)5	
RX(m+n)6		RY(m+n)6	
RX(m+n)7	Not used	RY(m+n)7	
RX(m+n)8	Initial data processing request	RY(m+n)8	Initial data processing
RX(m+n)9	Initial data setting completion flag	RY(m+n)9	Initial data setting request flag
RX(m+n)A	Error state flag	RY(m+n)A	Error reset request flag
RX(m+n)B	Remote state flag	RY(m+n)B	Not used
RX(m+n)C	Message transmission	RY(m+n)C	Message transmission request flag
RX(m+n)D	Message handshake flag	RY(m+n)D	Message handshake flag
RX(m+n)E	Not used	RY(m+n)E	Not used
RX(m+n)F		RY(m+n)F	

m = Station address

n = The value depends on the number of assigned station addresses and the "Extended Cycles".

	1	
Assigned station addresses (occupied stations)	Extended cycles	n
2	No	3 _{hex}
2	2	5 _{hex}
2	4	B _{hex}
2	8	17 _{hex}
3	No	5 _{hex}
3	2	9 _{hex}
3	4	13 _{hex}
3	8	27 _{hex}
4	No	7 _{hex}
4	2	D _{hex}
4	4	1B _{hex}
4	8	37 _{hex}

Startup

6.6 IO-Link MTA

The Message transmission size is always 4 words (8 bytes). To transmit messages to the IO-Link device, the Message Transfer Area in the cyclical process data buffer is used. The protocol used makes it possible to transmit messages that are larger than the Message Transfer Area.

At the start of the transmission, the master sets RY(m+n)C, the Message transmission request flag. BIS V-6111 acknowledges this by setting RX(m+n)C Message Transmission. The master can now copy the first 8 bytes of the message into the Message Transmission Area and set the RY(m+n)D Message handshake flag. BIS V-6111 reads out the Message Transmission Area, writes its response into it and sets the RX(m+n)D Message handshake flag. If another data block is to be transmitted, the master can now copy it to the Message Transmission Area and invert the Message handshake flag. BIS V-6111 acknowledges it by inverting its Message handshake flag. When the message transmission is complete, the master sets RY(m+n)C to 0, which BIS V-6111 acknowledges by also setting RX(m+n)C to 0.

Message

Structure

Read request		Write request	
Block number	L	Block number	L
Subcommand type	Н	Subcommand type	Н
Division number	L	Division number	L
Data size	Н	Data size	Н
Request data		Request data	
Sum check		Sum check	

Read response		Write response	
Block number	L	Block number	L
Subcommand type	Н	Subcommand type	Н
Return status	L	Return status	L
	Н		Н
Division number	L	Division number	L
Data size	Н	Data size	Н
Response data		Response data	
Sum check		Sum check	

IO-Link MTA (continued) The following is a description of the messages that can be transmitted in the Message Transfer Area.

BIS V-6111 processes Identification data directly:

Byte No.	Item	Identification data	Process data size
Byte 0	Channel	0x10	0x20
Byte 1	Length	0-64	1
Byte 2	Control/Status	Read	Read
Byte 3	Index	Index	0
Byte 4			IO-Link port 0
Byte 5			
Byte 6	Message data	Request/Response Data (length = 0-64 bytes)	Unused
Byte 7			
Byte 8			
Byte 9			
Byte 10	_		
Byte 11			
Byte 12			
Byte 252			

The index defines which information is read.

Index	Description	
0x00 0x0A	Unused	
0x10	Vendor name	
0x11	Vendor text	
0x12	Product name	
0x13	Product code	
0x14	Product text	
0x15	Serial Number	
0x16	Hardware revision	
0x17	Firmware revision	
0x18 0xFF	Unused	

Startup

IO-Link MTA (continued)

The following messages affect the connected IO-Link device:

		Identification data			
Byte No.	Item	ISDU	Event data	Validation data	Data storage
Byte 0	Channel	0x30	0x31	0x32	0x33
Byte 1	Length	0-232	4	24	2
Byte 2	Control/ Status	Read/write	Read/-	Read/write	Read/write
Byte 3	Index	Port Number	Port Number	Port Number	Port Number
Byte 4		Index_L	Event Qualifier	Validation Type	Configuration
Byte 5		Index_H	Reserved (Fixed to 0)	Reserved (Fixed to 0)	Reserved (Fixed to 0)
Byte 6	-	Subindex	EventCode_L	Vendor ID_1	
Byte 7		Reserved (Fixed to 0)	EventCode_H	Vendor ID_2	
Byte 8	1			Device ID_1	1
Byte 9				Device ID_2	
Byte 10	Message			Device ID_3	
Byte 11	data	Request/		Reserved (Fixed to 0)	Unused
Byte 12		Response Data (length = 0-232	Unused	Serial number 1	
	bytes)				
Byte 27				Serial number 16	
 Byte 252				Unused	

Startup

IO-Link MTA (continued)

The following table describes the individual fields of the messages:

•-		
Item	Description	
Channel	Data selects the access area	
Length	The length of the message data	
Control/Status	For request message: 0x02 = write 0x03 = read For response message: 0x00 = OK 0xF0 = error	
Index/port no.	Index = address of the gateway identification data (for details refer to the next table) Port Number = IO-Link port number	
Identification data	Identification data of the gateway, for details refer to the following "Description of the gateway identification data index"	
Process data size	The process data size setting for each IO-Link port can be read and written. The value shows the mapped process data size for each IO-Link port in words (0 - 16). The sum of all IO-Link port's data size plus the message transmission area must not exceed the maximum available word area, which is determined by the number of occupied stations and extended cyclic setting.	
ISDU	Reading/writing IO-Link parameter data	
Event data	The event data (event qualifier and event code) of a pending event indicated by the IO-Link port event flag can be read. After reading the event data the IO-Link port event flag changes to 0.	
Validation data	IO-Link device validation. The validation type is defined as follows: 0x00 = validation deactivated 0x01 = validation of IO-Link Vendor ID and IO-Link Device ID 0x02 = validation of IO-Link Vendor ID, IO-Link Device ID and serial number Depending on the configuration of the IO-Link device validation the connected device's information is verified and the result indicated by the port valid bit.	
Data storage	For configuration of the data storage function of the IO-Link master. The configuration byte is defined as follows: 0x81 = data storage upload enable (IO-Link device -> IO-Link master) 0x82 = data storage download enable (IO-Link master -> IO-Link device) 0x83 = data storage upload/download enable	

7.1 Function Principle of the BIS V-6111 Two buffers are needed to exchange data and commands between the processor unit and the controlling system (input buffer and output buffer). The buffer contents are exchanged using cyclical polling. The buffer content depends on the cycle in which it is written (e.g. control commands at the beginning of a job).

When writing to the buffer, the transmitted data from the preceding cycle is overwritten. Unwritten words are not deleted and retain their data content.

Example:

Total buffer size 44 words (4 \times 8 words: heads H1...H4, 8 words: IO-Link), 4 words Message Transfer Area

H1
0x000x07
H2
0x080x0F
H3
0x100x17
H4
0x180x1F
IO-Link
0x200x28
MTA
0x2C0x2F

The buffer size of the total buffer results from the sum of all buffers.

The process data buffer is divided into multiple ranges:

- Range 1...4 = read/write heads 1...4 (H1...H4)
- Range 5 = IO-Link
- Message Transfer Area

The size of these areas can be configured.

IO-Link

IO-Link data is transmitted unchanged to the IO-Link slaves via the IO-Link master. IO-Link buffer: 0...32 bytes (max.)

7.2 Process Data Buffer

Output buffer

Bit header

If the IO-Link function is disabled, the bit header from head 1 has the CC-Link point address RYm0...RYm7. If the IO-Link is enabled, the point address RY(m+4)0...RY(m+4)7 and the number of points has to be greater than or equal to 96.

Bit No.	Bit header
0	AV
1	-
2	GR
3	-
4	-
5	KA
6	TI
7	-

Point address of bit header 1-4

	Head 1	Head 2	Head 3	Head 4
IO-Link disable	RYm0RYm7	RYm8RYmF	RY(m+1)0 RY(m+1)7	RY(m+1)8 RY(m+1)F
IO-Link enable	RY(m+4)0 RY(m+4)7	RY(m+4)8 RY(m+4)F	RY(m+5)0 RY(m+5)7	RY(m+5)8 RY(m+5)F

Assignment and explanation

Subaddress	Bit name	Meaning	Function description
RYm0	AV	Job	A job is present.
RYm2	GR	Basic state	Cancels the current job for this R/W head and puts the channel into a basic state. The R/W head can then be used again once GR = 0 and the controller has acknow- ledged this with BB = 1. The CP and MT of the input buffer (see page 37) are 0.
RYm5	KA	Head shutoff	Shuts off the R/W head's antenna. Tag detection no longer takes place. The CP and MT of the input buffer (see page 37) are 0.
RYm6	TI	Toggle bit in	Controller is ready to receive additional data (read job).

Command structure

7

Command designator 0000_{hex}: No command present

Subaddress	Meaning	Function description
0000 _{hex}	Command designator	0000 _{nex} : No command present.
	None	No meaning

Command designator 0001_{hex}: Read from data carrier

Subaddress	Meaning	Function description
0000 _{hex}	Command designator	0001 _{hex} : Read from data carrier.
0001 _{hex}	Start address	Start address for reading.
0002 _{hex}	Number of words	Number of words to be read starting from the start address.

Command designator 0002_{hex}: Write to data carrier

Subaddress	Meaning	Function description
0000 _{hex}	Command designator	0002 _{nex} : Write to data carrier.
0001 _{hex}	Start address	Start address to be written from.
0002 _{hex}	Number of words	Number of words to be written starting from the start address.

Data is accepted from the processor unit only after the command has been accepted by the processor unit and acknowledged.

0000 _{hex}	Data	Transmission of the data that is to be written to the data carrier.
0001 _{hex}	Data	Transmission of the data that is to be written to the data carrier.
	Data	Transmission of the data that is to be written to the data carrier.

Command designator $\rm 0003_{hex}$: Display output

The display output function allows a text to be output on the display. The text remains in place until a button is pressed and held down. A maximum of 24 characters can be output. The line break is inserted automatically after 8 characters. Space characters are allowed. A zero discontinues the output.

Subaddress	Meaning	Function description
0000 _{hex}	Data	0003 _{hex} : Display output
0001 _{hex}	Command designator	Characters for display output.
	Data	Characters for display output.

7

Command designator $\rm 0007_{hex}\!:$ Store the start address for the "Auto Read" function

Subaddress	Meaning	Function description
0000 _{hex}	Command designator	0007 _{hex} : Store the start address for the "Auto Read" function in EEPROM.
0001 _{hex}	Start address	Address for the "Auto Read" function starting from which the data carrier is read. The value is stored in the EEPROM.

Command designator 0009_{hex} : Type and serial number

Subaddress	Meaning	Function description
0000 _{hex}	Command designator	0009 _{hex} : Read the read/write head type, data carrier type and UID (unique identifier) of a data carrier in the field (for data format, see page 20).

Command designator 0011_{hex}: Copy data between data carriers

Subaddress	Meaning	Function description
0000 _{hex}	Command designator	0011 _{hex} : Copy data between data carriers
0001 _{hex}	Source start address	Copy the start address of the source data carrier for the function from which copying is to start.
0002 _{hex}	Target start address	Copy the start address of the target data carrier for the function from which copying is to start.
0003 _{hex}	Number of words	Number of words to be copied starting from the source start address.
0004 _{hex}	Target R/W head number	Number of the read/write head that the target data carrier is in front of.

Command designator $\rm 0012_{hex}$: Initialize CRC_16 data check

Subaddress	Meaning	Function description
0000 _{hex}	Command designator	0012 _{nex} : Initialize CRC_16 data check
0001 _{hex}	Start address	Start address from which the CRC_16 data check is to be carried out.
0002 _{hex}	Number of words	Number of words for which a CRC_16 data check is to be carried out from the start address (low word).

7

Command designator $\rm 0032_{hex}\!\!:$ Write constant value to data carrier

Subaddress	Meaning	Function description
0000 _{hex}	Command designator	0032 _{nex} : Write constant value to data carrier.
0001 _{hex}	Start address	Start address to be written from.
0002 _{hex}	Number of words	Number of words to be written starting from the start address.

Data is accepted from the processor unit only after the command has been accepted by the processor unit and acknowledged.

0000 _{hex}	Data	Value that is to be written to the data carrier.
0001 _{hex}	None	No meaning

Command designator 0051_{hex} : Set device parameters

Subaddress	Meaning	Function description
0000 _{hex}	Command designator	0051 _{hex} : Set device parameters
0001 _{hex}	Device parameter	Bit 0: Display / Keyboard read-only, if 1 Bit 1: Energy saving function of LEDs active, if 1

Command designator 0052_{hex} : Set head parameters

Subaddress	Meaning	Function description
0000 _{hex}	Command designator	0052 _{hex} : Set head parameters
0001 _{hex}	Head parameter	If the corresponding bit is set to 1, the function is active: Bit 0: CRC Bit 1: Dynamic mode Bit 2: Output type and serial numbers if Tag-Present Bit 3: Energy saving function – slow data carrier detection Bit 4: Energy saving function – reduced transmitting power Bit 5: Energy saving function – shut off LEDs
0002 _{hex}	Data carrier type	1: All data carriers are detected 10: Mifare 11: ISO 15693 20: EM4x02 21: HItag1 22: HItagS 30: BIS C 32 Byte 31: BIS C 64 Byte
0003 _{hex}	Repeat counter	Bits 02 Repeat counter for L-heads.

7

Command designator $\rm 0081_{hex}$: Read data carrier with 24-bit address assignment

Subaddress	Meaning	Function description
0000 _{hex}	Command designator	0081 _{hex} : Read data carrier
0001 _{hex}	Start address (low word)	Start address for reading.
0002 _{hex}	Start address (high word)	Start address for reading.
0003 _{hex}	Number of words (low word)	Number of words to be read starting from the start address.
0004 _{hex}	Number of words (high word)	Number of words to be read starting from the start address.

Command designator $\rm 0082_{hex}$: Write data carrier with 24-bit address assignment

Subaddress	Meaning	Function description
0000 _{hex}	Command designator	0082 _{nex} : Write to data carriers
0001 _{hex}	Start address (low word)	Start address to be written from
0002 _{hex}	Start address (high word)	Start address to be written from
0003 _{hex}	Number of words (low word)	Number of words to be written starting from the start address.
0004 _{hex}	Number of words (high word)	Number of words to be written starting from the start address.

Command designator $\rm 0087_{hex}$: Saving the start address for the Auto Read function with 24-bit address assignment

Subaddress	Meaning	Function description
0000 _{hex}	Command designator	0087 _{hex} : Store the start address for the "Auto Read" function in EEPROM.
0001 _{hex}	Start address (low word)	Address for the "Auto Read" function starting from which the data carrier is read. The value is stored in the EEPROM.
0002 _{hex}	Start address (high word)	Address for the "Auto Read" function starting from which the data carrier is read. The value is stored in the EEPROM.

7

Subaddress	Meaning	Function description
0000 _{hex}	Command designator	0091 _{hex} : Copy data
0001 _{hex}	Source start address (low word)	Copy the start address of the source data carrier for the function from which copying is to start.
0002 _{hex}	Source start address (high word)	Copy the start address of the source data carrier for the function from which copying is to start.
0003 _{hex}	Target start address (low word)	Copy the start address of the target data carrier for the function from which copying is to start.
0004 _{hex}	Target start address (high word)	Copy the start address of the target data carrier for the function from which copying is to start.
0005 _{hex}	Number of words (low word)	Number of words to be copied starting from the source start address.
0006 _{hex}	Number of words (high word)	Number of words to be copied starting from the source start address.
0007 _{hex}	Target R/W head number	Number of the read/write head that the target data carrier is in front of.

Command designator $\rm 0091_{hex}$: Copy data between data carriers with 24-bit address assignment

Command designator $\rm 0092_{hex}$: Initialize CRC_16 data check with 24-bit address assignment

Subaddress	Meaning	Function description
0000 _{hex}	Command designator	0092 _{nex} : Initialize CRC_16 data check.
0001 _{hex}	Start address (low word)	Start address from which the CRC_16 data check is to be carried out.
0002 _{hex}	Start address (high word)	Start address from which the CRC_16 data check is to be carried out.
0003 _{hex}	Number of words (low word)	Number of words for which a CRC_16 data check is to be carried out from the start address (low word).
0004 _{hex}	Number of words (high word)	Number of words for which a CRC_16 data check is to be carried out from the start address (high word).

Command designator $\rm 00B2_{hex}$: Write constant value to data carrier with 24-bit address assignment

Subaddress	Meaning	Function description
0000 _{hex}	Command designator	00B2 _{hex} : Write to data carrier.
0001 _{hex}	Start address (low word)	Start address to be written from.
0002 _{hex}	Start address (high word)	Start address to be written from.
0003 _{hex}	Number of words (low word)	Number of words to be written.
0004 _{hex}	Number of words (high word)	Number of words to be written.

Input buffer

7

Bit header

If the IO-Link function is disabled, the bit header from head 1 has the CC-Link point address RXm0...RXm7. If the IO-Link is enabled, the point address RX(m+4)0...RX(m+4)7 and the number of points has to be greater than or equal to 96.

Bit No.	Header
0	CP
1	AA
2	AE
3	AF
4	MT
5	ТО
6	HF
7	BB

Point address of bit header 1-4

	Head 1	Head 2	Head 3	Head 4
IO-Link disable	RXm0RXm7	RXm8RXmF	RX(m+1)0 RX(m+1)7	RX(m+1)8 RX(m+1)F
IO-Link enable	RX(m+4)0 RX(m+4)7	RX(m+4)8 RX(m+4)F	RX(m+5)0 RX(m+5)7	RX(m+5)8 RX(m+5)F

Assignment and explanation

Subaddress	Bit name	Meaning	Function description
RXm0	CP	Code Present	A data carrier has been detected.
RXm1	AA	Job start	A job was detected and started.
RXm2	AE	Job end	A job was completed without errors.
RXm3	AF	Job error	A job was processed incorrectly or was canceled.
RXm4	MT	Multiple Tag	More than 1 data carrier is in the R/W head's field.
RXm5	ТО	Toggle bit out	Read: Additional data is being provided by the identification system. Write: Identification system can accept additional data.
RXm6	HF	Head error	Cable break to the R/W head.
RXm7	BB	Ready	After powering up or after a reset via the GR bit (of the output buffer, see page 31) the BB bit indicates that the corresponding channel is ready.

The structure of the process data buffer is identical for all commands.

Subaddress	Meaning	Function description
0000 _{hex}	Data	Transmission of data that was read from the data carrier.
0001 _{hex}	Data	Transmission of data that was read from the data carrier.
0002 _{hex}	Data	Transmission of data that was read from the data carrier.
	Data	Transmission of data that was read from the data carrier.

In case of error:

Subaddress	Meaning	Function description
0000 _{hex}	Error	Error code

Status codes

Status codes are only valid in connection with the AF bit!

Status code	Function description
0000 _{hex}	Everything OK
0001 _{hex}	Job cannot be run because there is no data carrier in range of the read/write head.
0002 _{hex}	Cannot read the data carrier.
0003 _{hex}	Data carrier was removed from the R/W head's range during reading.
0004 _{hex}	Cannot write to the data carrier.
0005 _{hex}	Data carrier was removed from the R/W head's range during writing.
0007 _{hex}	No or invalid command designator with set AV bit (of the output buffer, see page 31) or the number of bytes is 00_{hex} .
0009 _{hex}	R/W head cable break or no R/W head connected.
000D _{hex}	Communication to the R/W head disrupted.
000E _{hex}	CRC for the read data and CRC for the data carrier do not agree.
000F _{hex}	1st and 2nd bit header are unequal. The 2nd bit header must be used.
0020 _{hex}	Address assignment of the read/write job is outside the memory range of the data carrier.
0021 _{hex}	This function is not possible for this data carrier.

Description of the Code Present (CP) and Multiple Tag (MT) bits

СР	МТ	Meaning
0	0	No tag in the field
1	0	Exactly one tag in the field. Automatic reading is OK (if configured).
0	1	More than one data carrier is in the field. They cannot be processed.
1	1	Does not occur.

Communication

Communication between the controlling system and processor unit is defined by a sequence protocol. Communication between controlling system and processor unit is implemented using the control bit in the RX/RY-point buffer.

Basic sequence

- 1. The controller sends a command designator to the processor unit in the output buffer with the AV bit (RYm0) set.
- The AV bit tells the processor unit that a job is beginning and the transmitted data is valid. 2. The processor unit accepts the job and confirms the job by setting the AA bit (RXm1) in the
 - input buffer.
- 3. If additional data needs to be exchanged for the job, readiness for additional data exchange is indicated by inverting the TI (RYm6) and TO (RXm5) toggle bits.
- 4. The processor unit has correctly executed the job and sets the AE bit (RXm2) in the RX buffer.
- 5. The controller has accepted all data. The AV bit (RYm0) in the RX buffer is reset.
- The processor unit resets all the control bits set in the RX buffer during the job (AA bit, AE bit). The processor unit is ready for the next job.

Read/write times

Note

Mifare

All specifications are typical values. Deviations are possible depending on the application and combination of R/W head and data carrier.
The specifications apply to static operation; no CRC_16 data checking.
All specified write/read times refer to communication between the data carrier and read/write head.
The times for data communication between the processor unit and the controlling system are not included.

For read/write heads BIS VM

R	lead times Data carrier with 16 bytes per block	
Data carr	ier detection	≤ 20 ms
Read byt	es 0 to 15	≤ 25 ms
for each a	additional start of a 16-byte block	≤ 10 ms

Write times Data carrier with 16 bytes per block		
Data carrier detection	≤ 20 ms	
Write bytes 0 to 15	≤ 60 ms	
for each additional start of a 16-byte block	≤ 30 ms	

ISO 15693

Read times Data carrier with 16 bytes per block		
Data carrier detection	≤ 20 ms	
Read bytes 0 to 15	≤ 25 ms	
for each additional start of a 16-byte block	≤ 10 ms	

Write times Data carrier with 16 bytes per block			
	FRAM (BIS M-102/20)	EEPROM (BIS M-103/07/08)	
Data carrier detection	≤ 20 ms	≤ 20 ms	
Write bytes 0 to 15	≤ 60 ms	≤ 80 ms	
for each additional start of a 16-byte block	≤ 25 ms	≤ 80 ms	

High speed*

Read times Data carrier with 64 bytes per block		
Data carrier detection	≤ 20 ms	
Read bytes 0 to 63	≤ 14 ms	
for each additional start of a 64-byte block	≤ 6 ms	

Write times Data carrier with 64 bytes per block		
Data carrier detection	≤ 20 ms	
Write bytes 0 to 63	≤ 30 ms	
for each additional start of a 64-byte block	≤ 15 ms	

*These times apply only to the combination of read/write head BIS VM-3_-401-S4 with BIS M-1_-11/A, BIS M-1_-13/A, BIS M-1_-14/A, or BIS M-1_-15/A data carriers.

Read times

Data carrier with 16 bytes per block	BIS L-1
Data carrier detection	≤ 110 ms
Read bytes 0 to 15 ≤ 175 m	
for each additional start of a 16-byte block	≤ 40 ms

Data carrier BIS L-2__

Data carrier detection + Read data carrier \leq 140 ms

Write times

Data carrier with 16 bytes per block	BIS L-1
Data carrier detection	≤ 110 ms
Write bytes 0 to 15 ≤ 285 ms	
for each additional start of a 16-byte block $\leq 100 \text{ ms}$	

Data carrier BIS L-2__

Writing not possible

For read/write heads BIS VL

7

For read/write heads BIS C

Read times in static mode

Data carrier with 32 bytes per block		
No. of bytes	Read time [ms]	
0 to 31	110	
for each additional start of a 32-byte block	120	

Data carrier with 64 bytes per block		
No. of bytes	Read time [ms]	
0 to 63	220	
for each additional start of a 64-byte block	230	

Write times in static mode

Data carrier with 32 bytes per block		
No. of bytes Read time [ms]		
0 to 31	110 + n * 10	
≥ 32 bytes	y * 120 + n * 10	

Data carrier with 64 bytes per block		
No. of bytes	Read time [ms]	
0 to 63	220 + n * 10	
≥ 64 bytes	Y * 230 + n * 10	

n = Number of contiguous bytes to write

y = Number of blocks to process

Example: 17 bytes should be written starting at address 187. Data carrier = 32 bytes per block. Blocks 5 and 6 are processed, since the start address 187 is in block 5 and end address 203 is in block 6.

t = 2 * 120 + 17 * 10 = 410

7

Read times within the first block in dynamic mode

Data carrier with 32 bytes per block		
No. of bytes Read time [ms]		
0 to 3	14	
for each additional byte	3.5	
0 to 31	112	

Data carrier with 64 bytes per block		
No. of bytes Read time [ms]		
0 to 3	14	
for each additional byte	3.5	
0 to 63	224	

m = Highest address to read Formula: t = (m + 1) * 3.5 ms

Example: Read 11 bytes starting at address 9. This means that the largest address to be read is 19. This yields 70 ms.

Note

Dynamic operation with BIS C: The times indicated apply after the data carrier has been detected. Otherwise 45 ms must be added for powering up until the data carrier is recognized. To achieve the read times specified in dynamic operation, the Tag Type parameter has to be set to "BIS C 32 Byte" or "BIS C 64 Byte" on the respective head.

- **7.3 Function** The operating states of the identification system, the Profibus DP interface and the IO-Link master are displayed using LEDs.
 - **Overview of** display elements 7 \bigcirc ۲ 6 \bigcirc (🔿 . C 5 Figure 7: Function indicators Ready device (RD) Service/IO-Link 1 5 Ready (RD) CC-Link COM R/W head 2 6 RD R/W head 3 Display 7 Error (ERR) CC-Link 4

Device LEDs

7

	Function		
Display	Ready device (RD) (Green)	Ready (RD) (Green)	Error (ERR) (Red)
Off	Device is not ready for operation	No voltage or no CC-Link	No voltage or no CC-Link
LED lights up	Device is ready for operation	Device in cyclical data exchange	Bus error

R/W head LEDs

	Function		
Display	RD R/W head (Green)	COM R/W head (Yellow)	
Off	Not ready	No data carrier detected	
LED lights up	Ready	Data carrier detected (CP)	
LED flashes	Cable break or R/W head not connected	Data carrier is being processed	

IO-Link port LED The IO port is assigned an LED for displaying operating states.

Diaplay	Function		
Display	IO-Link	Input	
Off	CC-Link not yet started	Signal = 0	
Yellow	-	Signal = 1	
Red	Error	SS*	
Green	IO-Link communication active	-	
Green, flashing	IO-Link node missing or cable break	-	

* Short-circuit at PIN 1. In this case, the LED lights up in red.

7.4 Examples

1. Reading 30 words at R/W head 1, start address 10

Once enough data has been read to fill the input buffer of R/W head 1 while running the reading job, the data will be carried over to the input buffer. The AE bit is not set until the processor unit has finished the "Read" operation.

The reply "Job end" (AE bit) is reliably set no later than before the last data has been sent. This time point depends on the requested data amount and the time response of the controller. In the example, the use of italics for "Set AE bit" calls your attention to this fact.

Control

Identification system

1. Process of (note seq	output buffer uence):	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(note seq	nput buffer uence):
0000 _{hex}	Command designator 0001 _{hex}		RXm1	Set AA bit
0001 _{hex}	Start address 000A _{hex}		0000 _{hex} 000F _{hex}	Enter first 16 words
0002 _{hex}	No. of words 001E _{hex}		RXm5	Invert TO bit
RYm0	Set AV bit		RXm2	Set AE bit

3. Process	input buffer:	ANNUAL DE LA COMPANY		nput buffer:
0000 _{hex} 000F _{hex}	Copy first 16 words		0000 _{hex} 000D _{hex}	Enter second 16 words
RYm6	Invert TI bit		RXm5	Invert TO bit
			RXm2	Set AE bit
5. Process	input buffer:	THINNING AND A STATE OF A STATE O	6.	
0000 _{hex} 000D _{hex}	Copy second 16 words		RXm1	Reset AA bit
RYm0	Reset AV bit		RXm2	Reset AE bit

7

2. Reading 30 words at R/W head 1, start address 10, problem during reading

If a problem occurs, the AF bit is set with the corresponding status number instead of the AE bit. Setting the AF bit cancels the job and declares it as finished.

Control

Identification system

- 1. Process output buffer (note sequence):
- Process input buffer: (note sequence):
 If problem occurs immediately!

		, uuunuun 1	-	
0000 _{hex}	Command designator 0001 _{hex}		RXm1	Set AA bit
0001 _{hex}	Start address 000A _{hex}		0000 _{hex}	Enter status number
0002 _{hex}	Number of words 001E _{hex}		RXm3	Set AF bit
RYm0	Reset AV bit	IIIIIIII		
 Process i 	nput buffer:		4.	
0000 _{hex} 000F _{hex}	Copy status number	iuuuuu	RXm1	Reset AA bit
RYm6	Reset AV bit		RXm3	Reset AF bit

7

3. Reading 30 words at R/W head 1, start address 10, problem during reading

If a problem occurs after transmission of the data has started, the AF bit is provided instead of the AE bit together with a corresponding status number. The AF status message is dominant. Which data is incorrect cannot be specified. Setting the AF bit cancels the job and declares it as finished.

Control

Identification system

- 1. Process output buffer (note sequence):
- 2. Process input buffer (note sequence):

0000 _{hex}	Command designator 0001 _{hex}	munun	RXm1	Set AA bit
0001 _{hex}	Start address 000A _{hex}		0000 _{hex} 000F _{hex}	Enter first 16 words
0002 _{hex}	Number of words 001E _{hex}		RXm5	Invert TO bit
RYm0	Reset AV bit			

3. Process input buffer:4. Process input buffer:If a problem has occurred!

) Junnunur	li a probi	en nas occurreu:
0000 _{hex} 000F _{hex}	Copy first 16 words		0000 _{hex}	Enter status number
RYm6	Invert TI bit		RXm3	Set AF bit

5. Process	input buffer:	ANN	6.	
0000 _{hex}	Copy status number			Reset AA bit
RYm0	Reset AV bit		RXm3	Reset AF bit

7

4. Writing 30 words at R/W head 1, start address 20

Control

Identification system

1. Process (note sec	output buffer quence):		2. Process in (note seq	nput buffer uence):
0000 _{hex}	Command designator 0002 _{hex}		RXm1	Set AA bit
0001 _{hex}	Start address 000A _{hex}]	RXm5	Invert TO bit
0002 _{hex}	No. of words 001E _{hex}			
RYm0	Set AV bit			
3. Process	output buffer:		4. Process of	output buffer:
0000 _{hex} 000F _{hex}	Enter first 16 words	- iuuuuuu	0000 _{hex} 000F _{hex}	Copy first 16 words
RYm6	Invert TI bit	1	RXm5	Invert TO bit
5. Process	output buffer:		6. Process of	output buffer:
0000 _{hex} 000D _{hex}	Enter last words		0000 _{hex} 000D _{hex}	Copy last words
RYm6	Invert TI bit	1	RXm2	Set AE bit
7.				
RYm0	Reset AV bit		RXm1	Reset AA bit
			RXm2	Reset AE bit

5. Copying data from one data carrier to another

The data from one data carrier at a read/write head (source) is copied to a data carrier in front of another read/write head (target). The data carriers have to be in front of the read/write heads (even if dynamic mode has been configured) and must have the specified address range. The command is processed in the buffer of the source head.

In the example, 17 words starting from address 10 of the data carrier are to be copied to the data carrier in front of read/write head 3 starting from address 35.

Control

Identification system

	s output buffer equence):	 2.	(note se	equence)
0000 _{hex}	Command designator 0011 _{hex}	 RXm	1	Set AA bit
0001 _{hex}	Source start address	RXm	2	Set AE bit
0002 _{hex}	Target start address 0023 _{hex}			
0003 _{hex}	Number of words 0011 _{hex}			
0004 _{hex}	Target head number 0003 _{hex}			
RYm0	Set AV bit			
3.		4.		
RYm0	Reset AV bit	N RXm	1	Reset AA bit
		RXm		Reset AE bit

48 BALLUFF english

7

6. Writing a constant value to a data carrier

A data carrier is to be written with 1000 words (constant value) starting from start address 80.

Control

Identification system

0000 _{hex}	Command designator 0032 _{hex}	 RXm1	Set AA bit
0001 _{hex}	Start address 000A _{hex}	RXm5	Invert TO bit
0002 _{hex}	No. of words 001E _{hex}		
RYm0	Set AV bit		
3. Proce	ss output buffer:	. Proces	ss output buffer:
3. Proce	ss output buffer:	4. Proces	ss output buffer:
	ss output buffer: Enter constant value	4. Proces	ss output buffer: Copy constant value
		0000 _{hex} RXm2	'
0000 _{hex}	Enter constant value	0000 _{hex} RXm2	Copy constant value
0000 _{hex}	Enter constant value	0000 _{hex} RXm2	Copy constant value
0000 _{hex} RYm6	Enter constant value	0000 _{hex} RXm2	Copy constant value
0000 _{hex}	Enter constant value	0000 _{hex} RXm2	Copy constant value

7. Initializing a data carrier for CRC

The sequence for CRC initialization is similar to a write command. The start address and number of words must correspond to the maximum volume of data used. In the example the complete memory area of a data carrier (376 words) is used. 329 words on the data carrier are available as data words, since 47 words are required for the CRC.

Control			Identification	system
	s output buffer equence):		2. (note se	equence):
0000 _{hex}	Command designator 0012 _{hex}		RXm1	Set AA bit
0001 _{hex}	Start address 0000 _{hex}	1	RXm5	Invert TO bit
0002 _{hex}	Number of words 0292 _{hex}			
RYm0	Set AV bit			
	s output buffer:		4. Process	s output buffer:
0000 _{hex} 000F _{hex}	Enter first 16 words		0000 _{hex} 000F _{hex}	Copy first 16 words
RYm6	Invert TI bit		RXm5	Invert TO bit
0000 _{hex}	s output buffer: Enter second 16 words		0000 _{hex}	s output buffer: Copy second 16 words
000F _{hex}		-	000F _{hex}	
RYm6	Invert TI bit		RXm5	Invert TO bit
42. Proces	s output buffer:		43. Process	s output buffer:
0000 _{hex} 0002 _{hex}	Enter last words		0000 _{hex} 0002 _{hex}	Copy last words
RYm6	Invert TI bit	1	RXm2	Set AE bit
44.			45.	
RYm0	Reset AV bit		RXm1	Reset AA bit
		_	RXm2	Reset AE bit

7

8. Creating a basic state for a R/W head or switching off a R/W head

The read/write heads for the identification system can be put into a basic state independently of each other and the respective read/write head can be shut off.

Control

Identification system

1.		- 1111111111	2. Go to bas Process ir	ic state. nput buffer:
RYm2	Set GR bit		RXm7	Reset BB bit
3.		>	4.	nead is shut off.
RYm2	Reset GR bit		RXm7	Set BB bit

9. Switching off a read/write head antenna

During normal operation, all read/write head antennas are switched on. The antenna of a respective R/W head can be switched off by setting the KA bit.

Control

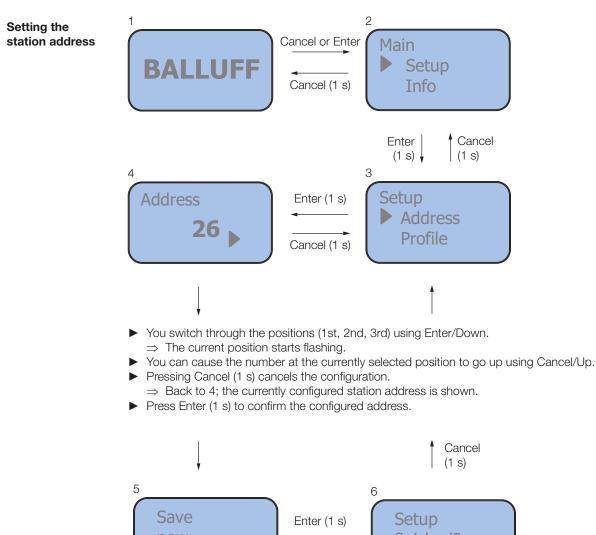
1.		
RYm5	Set KA bit	

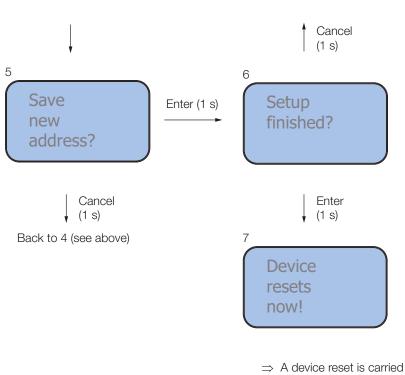
The R/W head's antenna is switched back on by resetting the KA bit.

7.5 Display

The display provides functions for starting up the BIS V. This can be used to configure the station address, profile and baud rate. Tag data and the version information can be read out for diagnostic purposes. It is controlled using a 2-button controller.

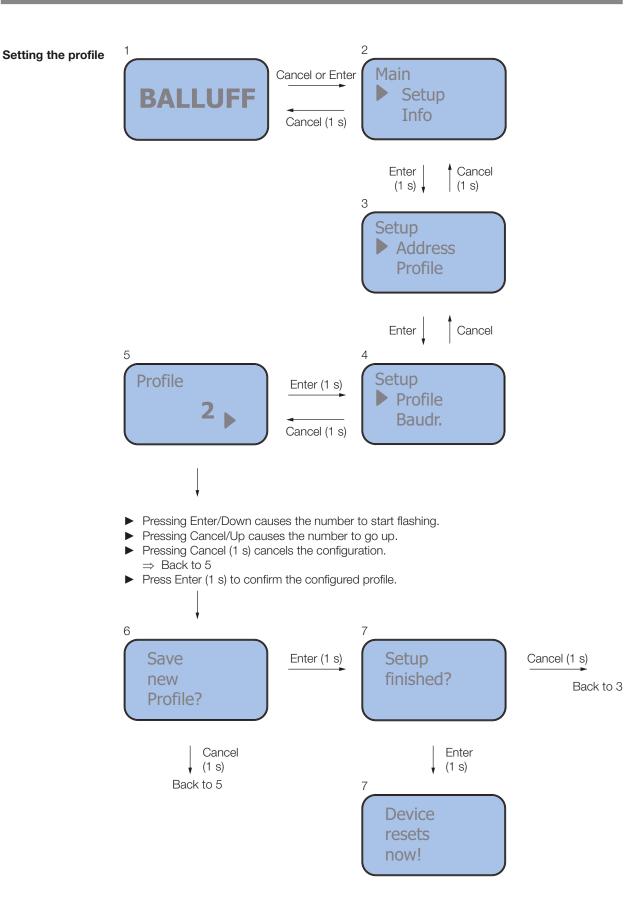
You can navigate within a menu level by holding the Enter/Down and Cancel/Up buttons for a short time. You can switch between menu levels or confirm or cancel an action by pressing the buttons longer.

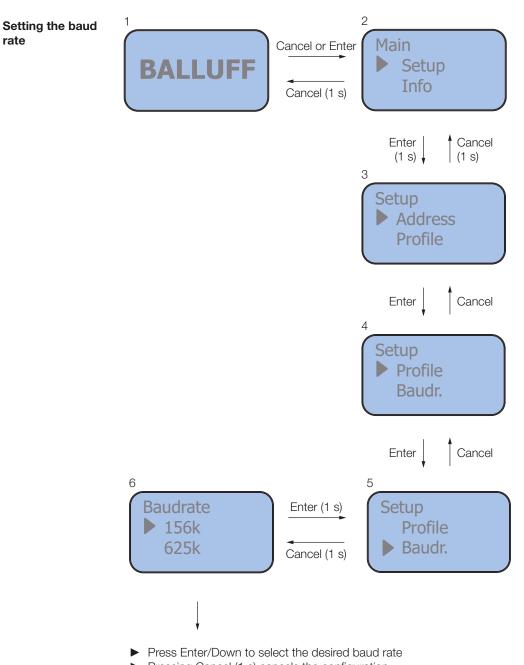



Display (gray/black text, blue backlighting)

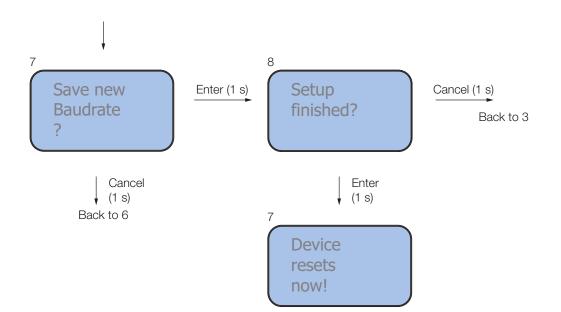
Enter/Down button

Cancel/Up button


Device Function

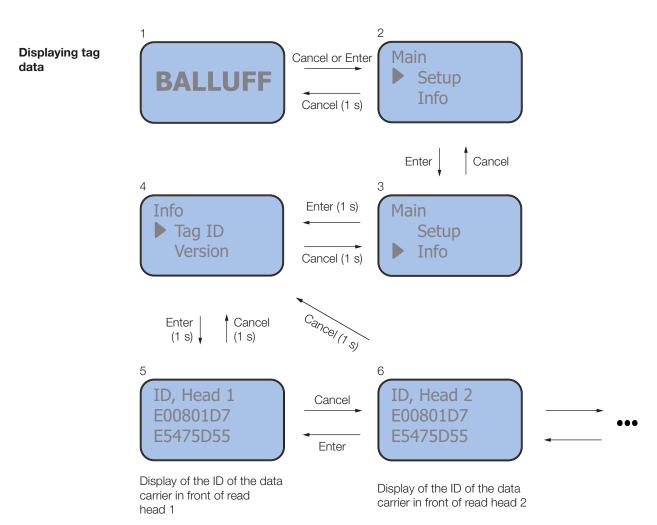

out (after restart: Back to 1)

Device Function

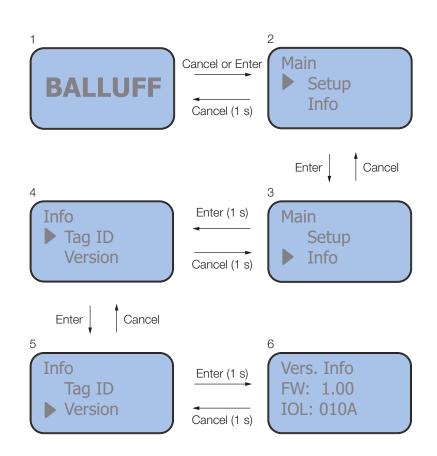


Device Function

7



- ► Pressing Cancel (1 s) cancels the configuration. ⇒ Back to 4; the current baud rate is shown
- ► Press Enter (1 s) to apply the value


Device Function

7

When selecting Head_IDs 1...4 (5, 6, etc.), you can hold down Cancel for 1 s to return to 4.

7

Two versions are displayed:

- The firmware version of the device (here 1.00)
- The software version of the IO-Link firmware (010A)

BIS V-6111 CC-Link Processor unit

Appendix

	$BIS V - 61 11 - 073 - C_{03}$							
Type code	Balluff Identification System							
	Series V (V = variable)							
	System component							
	6 = Processor unit							
	Generation (design/material)							
	1 = Generation 1, 2011 housing design, metal							
	Interface							
	$\begin{array}{llllllllllllllllllllllllllllllllllll$							
	Software type							
	073 = CC-Link							
	Connection system							
	 C003 = Power supply: 5-pin flanged male connector with 7/8" external thread, A-coded IO-Link master and USB: 5-pin flanged female connector with M12 internal thread, A-coded CC-Link input: 5-pin flanged male connector with M12 external thread, A-coded CC-Link output: 5-pin flanged female connector with M12 internal thread, A-coded 4 heads VL/VM and future systems: 5-pin flanged female connector with M12 internal thread, A-coded 4 heads VL/VM and future systems: 5-pin flanged female connector with M12 internal thread, A-coded C103 = As for C003, also supports BIS C read/write heads (adapter required) 							

Accessories (optional, not included)

i Note

You can find more accessories for the BIS V-6111-... in the Balluff BIS catalog and at www.balluff.com.

BIS V-6111 CC-Link Processor unit

Appendix

ASCII table

Decimal	Hex	Control code	ASCII	Decimal	Hex	ASCII	Decimal	Hex	ASCII
0	00	Ctrl @	NUL	43	2B	+	86	56	V
1	01	Ctrl A	SOH	44	2C	,	87	57	W
2	02	Ctrl B	STX	45	2D	-	88	58	Х
3	03	Ctrl C	ETX	46	2E		89	59	Y
4	04	Ctrl D	EOT	47	2F	/	90	5A	Ζ
5	05	Ctrl E	ENQ	48	30	0	91	5B	[
6	06	Ctrl F	ACK	49	31	1	92	5C	\
7	07	Ctrl G	BEL	50	32	2	93	5D	[
8	08	Ctrl H	BS	51	33	3	94	5E	Λ
9	09	Ctrl I	HT	52	34	4	95	5F	_
10	0A	Ctrl J	LF	53	35	5	96	60	`
11	0B	Ctrl K	VT	54	36	6	97	61	а
12	0C	Ctrl L	FF	55	37	7	98	62	b
13	0D	Ctrl M	CR	56	38	8	99	63	С
14	0E	Ctrl N	SO	57	39	9	100	64	d
15	0F	Ctrl O	SI	58	ЗA	:	101	65	е
16	10	Ctrl P	DLE	59	3B	;	102	66	f
17	11	Ctrl Q	DC1	60	3C	<	103	67	g
18	12	Ctrl R	DC2	61	3D	=	104	68	h
19	13	Ctrl S	DC3	62	3E	>	105	69	i
20	14	Ctrl T	DC4	63	ЗF	?	106	6A	j
21	15	Ctrl U	NAK	64	40	@	107	6B	k
22	16	Ctrl V	SYN	65	41	A	108	6C	I
23	17	Ctrl W	ETB	66	42	В	109	6D	m
24	18	Ctrl X	CAN	67	43	С	110	6E	n
25	19	Ctrl Y	EM	68	44	D	111	6F	0
26	1A	Ctrl Z	SUB	69	45	E	112	70	р
27	1B	Ctrl [ESC	70	46	F	113	71	q
28	1C	Ctrl \	FS	71	47	G	114	72	r
29	1D	Ctrl]	GS	72	48	Н	115	73	S
30	1E	Ctrl ^	RS	73	49	I	116	74	t
31	1F	Ctrl _	US	74	4A	J	117	75	u
32	20		SP	75	4B	К	118	76	V
33	21		!	76	4C	L	119	77	W
34	22		33	77	4D	М	120	78	х
35	23		#	78	4E	Ν	121	79	У
36	24		\$	79	4F	0	122	7A	Z
37	25		%	80	50	Р	123	7B	{
38	26		&	81	51	Q	124	7C	
39	27	· · · · · · · · · · · · · · · · · · ·	£	82	52	R	125	7D	}
40	28		(83	53	S	126	7E	~
41	29)	84	54	Т	127	7F	DEL
42	2A		*	85	55	U			

BIS V-6111 CC-Link Processor unit

Index

Α

Accessories 59 ASCII table 60 Auto Read Standard 20

С

Checksum 19 Communication Basic sequence 39 Control bit Job 39 Job end 39 Job start 39 Toggle bit in 39 Toggle bit out 39 Control function 7 CRC check 19

D

Data carrier types 21 Data integrity 7 Dimensions 12 Display elements 42 Dynamic mode 20

Ε

Electrical data 12

F

Function principle 6, 9, 30

I

Input buffer 37 Intended Use 5

Μ

Mechanical data 12

0

Operating conditions 13 Output buffer 31

Ρ

Processor unit Communication 39 Display elements 42 Function principle 30 Input buffer 37 Output buffer 31 Total buffer 30 Product description 6, 8, 9

R

Read times 39, 40 Read/write head Generate basic state 51 turn-off 51

S

Safety 5 Installation 5 Operation 5 Startup 5

Т

Technical data Dimensions 12 Electrical data 12 Mechanical data 12 Operating conditions 13 Total buffer 30 Type code 59 Type, serial number 20

W

Warning notes Meaning 5 Write times 40

www.balluff.com

Headquarters

Germany

Balluff GmbH Schurwaldstrasse 9 73765 Neuhausen a.d.F. Phone + 49 7158 173-0 Fax +49 7158 5010 balluff@balluff.de

Global Service Center

Germany

Balluff GmbH Schurwaldstrasse 9 73765 Neuhausen a.d.F. Phone +49 7158 173-370 Fax +49 7158 173-691 service@balluff.de

US Service Center

USA

Balluff Inc. 8125 Holton Drive Florence, KY 41042 Phone (859) 727-2200 Toll-free 1-800-543-8390 Fax (859) 727-4823 technicalsupport@balluff.com

CN Service Center

China

Balluff (Shanghai) trading Co., ltd. Room 1006, Pujian Rd. 145. Shanghai, 200127, P.R. China Phone +86 (21) 5089 9970 Fax +86 (21) 5089 9975 service@balluff.com.cn