BALLUFF

BIS V-6106 Ethernet/IP

Technical Reference, Operating Manual

english

www.balluff.com

1	User Instructions	4
	1.1 About This Manual	4
	1.2 Typographical Conventions	4
	1.3 Symbols	4
	1.4 Meaning of Warnings	4
	1.5 Abbreviations	5
9	Safety	6
	2.1 Intended Use 2.2 General Safety Notes	6 6
	2.2 General Salety Notes	0
3	Basic Knowledge	7
	3.1 Operating Principle of Identification Systems	7
	3.2 Product Description	7
	3.3 Control Function	8
	3.4 Data Integrity	8
	3.5 Read/Write Heads H1H4	9
	3.6 EtherNet/IP™	9
	3.7 IO-Link	10
	3.8 USB Port	10
4	Installation	11
	4.1 Processor Unit Scope of Delivery	11
	4.2 Processor Unit Installation	11
	4.3 Electrical Connections	12
5	Technical Data	14
6	Startup	16
	6.1 Assemblies	17
	6.2 Config Assembly	17
7	Device Functions	25
_	7.1 Function Principle of the BIS V-6106	25
	7.2 Process Data Buffer	26
	7.3 Function Indicator	66
	7.4 Examples	68
	7.5 Display	82
	7.6 Webserver	88
	Appendix	94
	Index	96

User Instructions

1.1	About This Manual	This manual describes the processor unit for BIS V-6106 Identification Systems and startup instructions for immediate operation.		
1.2	Typographical Conventions	The following conventions are used in this manual:		
	Actions	 Action instructions are indicated by a preceding triangle. The result of an action is indicated by an arrow. ▶ Action instruction 1. ⇒ Action result. ▶ Action instruction 2. 		
	Syntax	 Numbers: Decimal numerals are shown without an additional indicator (e.g. 123). Hexadecimal numerals are shown with the additional indicator _{hex} (e.g. 00_{hex}). 		
		Parameters: Parameters are shown in italics (e.g. CRC_16).		
		Directory paths: References to paths where data is stored or is to be saved are shown in small caps (e.g. Project:\Data Types\User-Defined).		
		Control characters: Control characters for sending are set in angle brackets (e.g. <ack>).</ack>		
		ASCII code: Characters transmitted in ASCII code are set in apostrophes (e.g. 'L').		
1.3	Symbols	Note, tip This symbol indicates general notes.		
1.4	Meaning of Warnings	Warning notes are especially safety-relevant and are used for accident avoidance. This information must be read thoroughly and followed exactly. The warning notes are constructed as follows:		
		SIGNAL WORD		
		Type and source of the hazard		
		Consequences of non-observance		
		Measures for hazard avoidance		
		The signal words used have the following meaning:		
		NOTICE The warning word NOTICE indicates a risk which can result in damage to or destruction of the product .		
		CAUTION The general warning symbol combined with the signal word CAUTION indicates a risk which can result in slight or moderate injuries .		
		WARNING The general warning symbol combined with the signal word WARNING indicates a risk which can result in serious injury or death .		
	DANCER			

DANGER

The general warning symbol combined with the signal word DANGER indicates a risk which can result **directly in serious injury or death**.

User Instructions

1.5 Abbreviations

BISBalluff Identification SystemCIPCommon Industrial ProtocolCPCode PresentCRCCyclic Redundancy CheckDHCPDynamic Host Configuration ProtocolEDSElectronic Data SheetEEPROMElectrical Erasable and Programmable ROMEIRPEquivalent Isotropically Radiated PowerEIPEtherNet/IPTMEMCElectronic Product CodeERPEffective Radiated PowerFCCElectronic Product CodeERPEffective Radiated PowerFCCFederal Communications CommissionFEFunctional groundLF CRLine Feed with Carriage ReturnMAC IDMedia Access Controln. c.not connectedODVAOpen DeviceNet Vendor AssociationPCPersonal ComputerRSSIReceive Signal Strength IndicatorPLCProgrammable Logic ControllerTagData carrierTIDTag identifierUHFUltra high frequencyUIDUnique IdentifierVIDVendor ID	CIP CP CRC DHCP EDS EEPROM EIRP EIP EMC EPC ERP FCC FE LF CR MAC ID n. c. ODVA PC RSSI PLC Tag TID UHF UID	Common Industrial Protocol Code Present Cyclic Redundancy Check Dynamic Host Configuration Protocol Electronic Data Sheet Electrical Erasable and Programmable ROM Equivalent Isotropically Radiated Power EtherNet/IP™ Electromagnetic compatibility Electronic Product Code Effective Radiated Power Federal Communications Commission Functional ground Line Feed with Carriage Return Media Access Control not connected Open DeviceNet Vendor Association Personal Computer Receive Signal Strength Indicator Programmable Logic Controller Data carrier Tag identifier Ultra high frequency Unique Identifier
---	---	--

Safety

2.1	Intended Use	The BIS V-6106 processor unit is a component of the BIS V identification system. It is used for
		linking to a host computer (PLC, PC) within the identification system. It may be used only for this
		purpose in an industrial environment corresponding to Class A of the EMC Law.
		This reference manual applies to processor units in the following series:

- BIS V-6106-034-C002
- BIS V-6106-034-C102
- BIS V-6106-034-C004
- BIS V-6106-034-C104

2.2 General Safety Notes
Installation and Startup
Installation and startup are to be performed by trained technical personnel only. Any damage resulting from unauthorized manipulation or improper use voids the warranty and any liability claims against the manufacturer.
When connecting the processor unit to an external controller, observe proper selection and polarity for the connection as well as the power supply (see Chapter 4"Installation" on page 11). The processor unit may only be used with an approved power supply (see Chapter 5)

"Technical Data" on page 14).

Conformity

CE

This product was developed and manufactured in accordance with the applicable European directives. CE conformity has been verified.

All approvals and certifications are no longer valid if:

- Components are used that are not part of the BIS V Identification System,
- Components are used that have not been explicitly approved by Balluff.

Operation and testing

The operator is responsible for ensuring that local safety regulations are observed. In the event of defects and non-correctable faults in the identification system, take the system out of service and secure it to prevent unauthorized use.

3.1 Operating Principle of Identification Systems The BIS V Identification System is classified as a non-contact system with read and write capabilities. This makes it possible to not only convey information that is programmed permanently in the data carrier, but also to collect and pass on current information.

The main components of the BIS V Identification System are:

- Processor unit,
- Read/write head (R/W head)
- Data carrier.

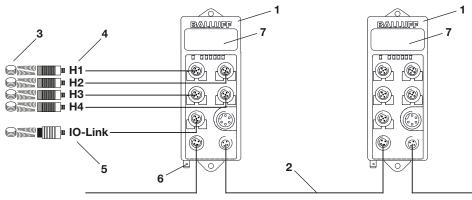


Figure 1: System Overview

1 BIS V

4

- 2 Ethernet/IP
- 3 Data carriers (max. 1 per R/W head)

Read/Write Heads H1...H4

- 5 Service/IO-Link6 Functional ground
- 7 Display
- . Biopia

The main areas of use are:

- In manufacturing for controlling material flow (e.g. for model-specific processes, for workpiece transport using conveying systems, for acquiring safety-related data,
- In warehouse areas for monitoring inventory movement,
 In the transportation sector and in materials handling.

3.2 Product Description Processor Unit BIS V-6106:

- Metal housing
- Round connector terminations
- Four read/write heads can be connected
- 1 × IO-Link module or standard input port can be connected
- Power for the system components provided by the processor unit
- Power for the data carrier provided by the read/write heads via carrier signal
- USB Port
- Ethernet/IP ports
- Display with keys for startup and configuration
- Control displays
- Webserver for diagnostics and service functions

3.3	Control Function	The processor unit is the link between data carrier and host control system. It manages two-way
		data transfer between data carrier and R/W head and provides buffer storage.
		The processor unit uses the R/W head to write data from the host control system to the data
		carrier or reads the data from the carrier and makes it available to the host control system.

Host control systems could include:

A control computer (e.g. industrial PC)

- A PLC.

Double Bit Header:

In order to ensure complete transmission of all data in the data buffer, the control bits in the data buffer's first and last byte (bit header) are transmitted and compared for each R/W head. If both bit headers are the same, then the data has been fully updated and can be transmitted. This means that the data for each R/W head is only valid if both bit headers are the same. Thus, the host control system must also compare the bits in the bit headers.

3.4 Data Integrity In order to increase data integrity, data transfer between the data carrier and processor unit and the storage device must be monitored using a check procedure. A CRC_16 data check can be enabled for this via parameter configuration. With the CRC_16 data check, a check code that allows the validity to be checked at any time is written to the data carrier.

A CRC_16 data check provides the following advantages:

- Data integrity even during the non-active phase (data carrier outside the R/W head).
- Shorter read time page is read once.

3.5 Read/Write Heads H1...H4

For BIS V-6106-034-C00_, read/write heads in the BIS VM-3__, BIS VL-3__, and BIS VU-3__ series can be connected to terminals H1...H4. BIS V-6106-034-C10_ also supports read/write heads in the BIS C-3__ series (Adapter required).

Read/write heads in the BIS VU-3__ series are only supported with a device software version of 3.0 or higher. Should the occasion arise, an update will be required.

Device software as well as manuals with detailed information about the read/write heads used are available at www.balluff.com.

BIS V processor units are available in different variants with respect to the supported read/write heads. The following table shows the differences.

Processor Unit	Available Connections	Compatible Read/Write Heads			
	H1H4	VM-3	VL-3	VU-3	C-3
BIS V-6106-034-C002	H1H4	YES	YES	YES	NO
BIS V-6106-034-C102	H1H4	YES	YES	YES	YES

i Note

Only shielded cables are to be used for connecting read/write heads!

An adapter cable is required for connecting read/write heads in the BIS C-3_ _ series.

The maximum cable length for read/write heads in the BIS VM-3__, BIS VL-3__, and BIS VU-3__ series is 50 m. For the BIS C-3__ series, the cable length is set at 1 m, 5 m, or 10 m plus the adapter depending on the design of the system.

Visit www.balluff.com for more information on available software and accessories.

3.6 EtherNet/IP™

Ethernet/IP is an industrial networking standard. The IP in Ethernet/IP stands for "Industrial Protocol". Ethernet/IP uses the "Common Industrial Protocol" (CIP) open communication protocol at the application tier (in accordance with ISO/OSI reference model). Ethernet/IP is supported by the "Open DeviceNet Vendor Association" (ODVA) network organization.

3.7 IO-Link	IO-Link is defined as a standardized point-to-point connection between sensors/actuators and an I/O module. An IO-Link sensor/actuator can send additional communication data (e.g. diagnostics signals) in addition to the binary process signals over the IO-Link interface.
	 Compatibility with standard I/O: IO-Link sensors/actuators can be connected to existing I/O modules. Sensors/actuators that are not IO-Link-capable can be connected to an IO-Link module. Standard sensor/actuator cables can be used
	 Key technical data: Serial point-to-point connection Communication as an add-on to the standard I/O Standard I/O connection technology, unshielded, 20 m cable length Communication using 24 V pulse modulation, standard UART protocol
3.8 USB Port	The device can be connected to a computer's USB port using the "Service/IO-Link" jack and then behaves like a USB stick. This allows access to the internal memory, where the manual, the GSD file and a communications driver for service functions are saved. In addition, the BIS V has to be connected to a voltage source. The communication driver can be installed as needed, but is not required for the USB port and BIS V to function.

Visit www.balluff.com for more information on available software and accessories.

Installation

4.1 Processor Unit Scope of Delivery

- Included in the scope of delivery:
- BIS V-6106
- 5 × closure cap
- Safety Precautions

Note Visit www.balluff.com for more information on available software and accessories.

4.2 Processor Unit Installation

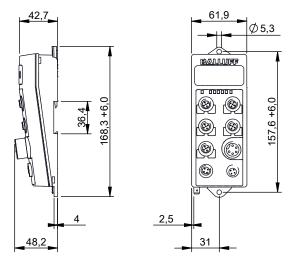


Figure 2: Mechanical connection (dimensions in mm)

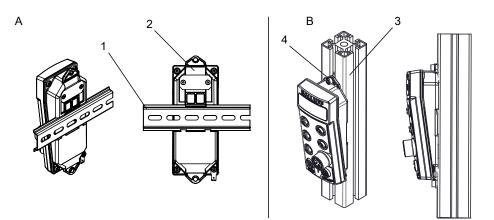
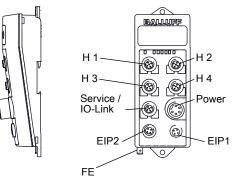


Figure 3: Installation examples (A: attachment to DIN rails, B: attachment to T-slotted framing)

- 1 DIN rail
- 2 Fastening

- 3 T-slotted framing
- 4 Holder for screw mounting
- ► Select a suitable installation position.
- Secure the processor unit using two M5 screws (strength category 8.8, lightly oiled, tightening torque M = 5.5 Nm).

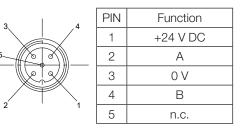

Installation

4.3 Electrical Connections

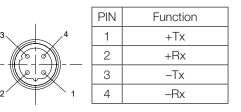
i Note

Make the ground connection either directly or using an RC combination to ground.

Connections

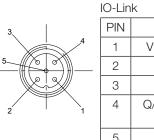


H1H4	Read/Write Heads
Service/IO-Link	USB function Service/IO-Link (master function)
EIP1	Ethernet/IP Port 1
EIP2	Ethernet/IP Port 2
FE	Functional ground


Figure 4: Electrical Connections

H1...H4

M12 female, 5-pin, A-coded



EIP port 1/2 M12 female, 4-pin, D-coded

IO-Link / Service

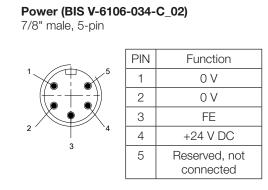
M12 female, 5-pin, A-coded

PIN	Function		
1	VP (+24 V DC)		
2	n. c.		
3	0 V		
4	Q/C (IO-Link) or digital input		
5	n. c.		

PIN	Function
1	n. c.
2	USB-
3	0 V
4	n. c.

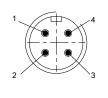
USB+

Service/USB


Damage to the USB interface

Standard USB cables can damage the USB interface on the PC.

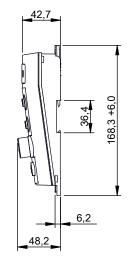
 Use the cable BCC0CR2 for the use of the Balluff Software BIS Cockpit or UHF Manager on the Port IO-Link / Service.


5

4 Installation

Power (BIS V-6106-034-C_04)

4-pin 7/8" male



PIN	Function	
1	0 V	
2	0 V	
З	n.c.	
4	+24 V DC	

Technical Data

5

Dimensions

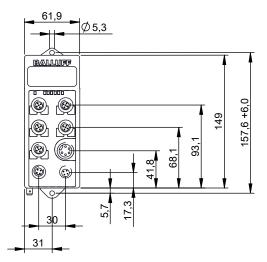


Figure 5: Dimensions in mm

Mechanical Data

Housing material	Zinc die-cast housing
H1H4	V _S 24 V DC - M12 female, 5-pin, A-coded
Service/IO-Link (master function)	M12 female, 5-pin, A-coded
Power	7/8" male, 5-pin
EIP port 2	M12 female, 4-pin, D-coded
EIP port 1	M12 female, 4-pin, D-coded
Protection Class	IP65 (with connectors)
Weight	800 g

Electrical Data

Operating Voltage V _s	24 V DC ±20% LPS Class 2	
Ripple	≤ 10%	
Power Consumption	≤2 A	
Application interfaces	Ethernet/IP™, IO-Link	

Application

IO-Link port M12, A-coded, female

interfaces

Pin 1	+24 V DC, 1 A	
Pin 2	USB+	
Pin 3	0 V	
Pin 4	IO-Link / input max. 500 mA	
Pin 5	USB-	

5 Technical Data

Operating	
conditions	

Ambient Temperature	0 °C+60 °C
Storage Temperature	0 °C+60 °C
EMC (BIS V-6106-034-C00_)	
– EN 61000-6-2	
– EN 61000-4-2/4/5/6	- Severity level 2A/3A/2A/3A
– EN 61000-4-3	
80 MHz – 1000 MHz	 Severity level 3A
1400 MHz – 2000 MHz	 Severity level 3A
2000 MHz – 2700 MHz	- Severity level 2A
- Emission as per EN 55016-2-3	– EN61000-6-4
EMC (BIS V-6106-034-C10_)	
– EN 300330-2	
– EN 61000-4-2/4/5/6	 Severity level 2A/2A/1A/2A
– EN 61000-4-3	
80 MHz – 1000 MHz	- Severity level 3A
1400 MHz – 2000 MHz	- Severity level 3A
2000 MHz – 2700 MHz	- Severity level 2A
- Emission as per EN 301489-1/-3	– EN 55022 (class A)
Vibration/shock	EN 60068 Part 2-6/27

Startup

EtherNet/IP™	The BIS V-6106 processor unit and the controlling system communicate via Ethernet/IP™ protocol. The Ethernet/IP™ system consists of the following components: - Ethernet/IP™ scanner - Ethernet/IP™ adapter (the BIS V-6106 processor unit in this case)
IP Address	The processor unit and the controlling system communicate using Ethernet/IP. Assigning a unique IP address associates the processor unit with a network. A processor unit can be integrated into a network in different ways (DHCP, BootP, ARP). A MAC
	address provides the basis for integration into a network. This hardware address is unique and distinctly identifies network devices such as the processor unit.
DHCP	Dynamic Host Configuration Protocol (DHCP) allows for dynamic assignment of an IP address using a server. The hardware can be integrated into the network without requiring any further configuration. Only automatic assignment (MAC address) of the IP address needs to be configured.
EDS file	All device perimeters for configuration are listed in the EDS file. An exact description of the parameters can be found under point 6.2 on page 17.

Startup

6.1 Assemblies

Assemblies	Instance ID	Data length
INPUT	100	308
OUTPUT	101	292
CONFIG	102	60

6.2 Config Assembly

Byte	Parameter	Description
00–01	Device	General configuration of the entire device
02–09	RFID Head 1 Configuration of read/write head 1	
10–17	RFID Head 2	Configuration of read/write head 2
18–25	RFID Head 3	Configuration of read/write head 3
26–33	RFID Head 4	Configuration of read/write head 4
34–59	IO-Link Port	Configuration of the IO-Link port

Device Parameter

Byte	Meaning
00	HMI read only
01	Device LEDs off

RFID Head 1 parameter

Byte	Meaning
02	CRC
03	Dynamic mode*
04	Type serial number
05	Slow tag detection*
06	Low antenna power*
07	Head LEDs off
08	UID Compare Count (only BIS VL-3)
09	Tag type
* Natfau us	

* Not for read/write heads BIS VU-3__

RFID Head 2 parameter	Byte	Meaning
parameter	10–17	Same as RFID Head 1 parameter

RFID Head 3	Byte	Meaning
parameter	18–25	Same as RFID Head 1 parameter

RFID Head 4 parameter	Byte	Meaning
	26–33	Same as RFID Head 1 parameter

5 Startup

IO-Link port	Byte	Meaning
parameter	34+35	IO-Link port function
	36	Cycle time
	37	Validation type
	38	IOL Vendor ID 1
	39	IOL Vendor ID 2
40		IOL Device ID 1
	41	IOL Device ID 2
	42	IOL Device ID 3
	43	IOL Serial number 1
	58	IOL Serial number 16
	59	Parameter server

Description of individual parameters	
HMI read only	If this function is enabled, the IP configuration settings can no longer be changed via the display.
Device LEDs off	If this function is enabled, the read/write head LEDs on the BIS V-6106 processor unit are shut off after 30 min. The parameters for this function are configured in the header module.

Startup

CRC check

The CRC check is a procedure for determining a check value for data in order to be able to recognize transmission errors. If the CRC check is enabled, a status message will be sent when a CRC error is detected.

The CRC check function is only supported by read/write heads in the BIS C, BIS VL, and BIS VM series.

Initializing

To use the CRC check, the data carrier has to be initialized. The data carrier is initialized in the output buffer using the 12_{hex} command identifier. If the data carrier does not contain the correct CRC, the processor unit sets an error message in the input buffer (see Example 7 on page 74).

Data carriers as shipped from the factory can be written with a checksum immediately, since all data is set to 0.

Checksum

M and L system:

The checksum is written to the data carrier as 2 bytes of information. 2 bytes per block are lost. This leaves 14 bytes per block available. The usable number of bytes can be found in the following table.

C system:

The checksum is written to the data carrier as 2 bytes of information per page. 2 bytes per page are lost, i.e. the page size is 30 bytes or 62 bytes depending on the data carrier type.

Startup

CRC check

The number of usable bytes thus decreases when using the checksum.

Balluff data carrier type	Memory capacity	Usable bytes for CRC_16
BIS M-101	752 Byte	658 Byte
BIS M-1 02	2000 Byte	1750 Byte
BIS M-1 03	112 Byte	98 Byte
BIS M-1 04	256 Byte	224 Byte
BIS M-1 05	224 Byte	196 Byte
BIS M-1 06	288 Byte	252 Byte
BIS M-107	992 Byte	868 Byte
BIS M-1 08	160 Byte	140 Byte
BIS M-1 09	32 Byte	28 Byte
BIS M-1 10	736 Byte	644 Byte
BIS M-1 11	8192 Byte	7168 Byte
BIS M-1 13	32786 Byte	28672 Byte
BIS M-1 14	65536 Byte	57344 Byte
BIS M-1 15	131072 Byte	114688 Byte
BIS M-1 20	8192 Byte	7168 Byte
BIS L-1 01	192 bytes	168 bytes
BIS L-2 03	5 bytes (read-only)	_
BIS L-1 05	192 bytes	168 bytes
BIS C-1 04	511 Byte	450 Byte
BIS C-1 05	1023 Byte	930 Byte
BIS C-1 11	2047 Byte	1922 Byte
BIS C-1 32	8192 Byte	7936 Byte

Dynamic mode

As soon as the *Dynamic Mode* function is enabled, the processor unit accepts the read/write job from the host control system and stores it, regardless of whether a data carrier is in the active zone of the R/W head or not. If a data carrier enters the active range of the R/W head, the stored job is run.

Note

To achieve the read times specified on page 64 in dynamic operation, the *Tag Type* parameter has to be set to "BIS C 32 Byte" or "BIS C 64 Byte" on the respective head.

Startup

Type serial number

If this function is enabled, the type of the read/write head as well as the data carrier type and the serial number (UID = Unique Identifier) for the data carrier are output with the Auto Read function instead of data. The data is output as soon as the data carrier is in the active zone of the read/ write head. The CP bit is set in the input buffer.

The length of the outputted data is reduced to the configured buffer size as appropriate.

Note about BIS C

BIS C data carriers do not have serial numbers.

Note about BIS VM and BIS VL

BIS M and BIS L data carriers transfer a UID with a length of 4 bytes (e.g. Mifare and Hitag1) or a UID with a length of 8 bytes (ISO 15693) into the Serial Number field. Because of this, the data sheet for the data carrier used is to be followed.

Note about BIS VU

BIS U data carriers transfer EPC or TID into the Serial Number field, depending on the most recently executed command. For BIS VU, 00_{hex} is transferred by default into the data carrier type field.

	Data Format	1 byte	1 byte	1 byte	Variable	
	Meaning	Length (number of bytes including length)	Read/write head type	Data Carrier Type	Serial Number	
	BIS VU-3	BIS VM-3001-S4	BIS VL-3001	-S4 BIS C-3		
		03	02	01		
-		antenna on the read/write	head is switched or	n for data carrie		
detection Low antenna	For this option, the a every 200 ms. This VM). Transmitting power	antenna on the read/write	head is switched or e respective read/w s parameter. The pa	n for data carrie rite head modu	ule (only BIS	
Slow tag detection Low antenna power	For this option, the a every 200 ms. This to VM). Transmitting power configured in the res	antenna on the read/write function is configured in th s reduced when using this pective read/write head m	head is switched or e respective read/w s parameter. The pa nodule and is reserv	n for data carrie rite head modu rameters for th ed for future re	ule (only BIS is function are ad/write heads.	
detection Low antenna	For this option, the a every 200 ms. This to VM). Transmitting power configured in the res Note Informatio	antenna on the read/write function is configured in th s reduced when using this	head is switched or e respective read/w s parameter. The pa nodule and is reserv	n for data carrie rite head modu rameters for th ed for future re r BIS VU read/	ule (only BIS is function are ad/write heads.	

Head LEDs off This parameter switches off the LEDs on the respective read/write head. This function is configured in the respective read/write head module (only BIS VM and BIS VU).

UID Compare This parameter indicates how often the 5-byte ID of a BIS L-1__-03 data carrier is imported and Count compared before the data carrier is shown as identified. The value default setting is 2. For highly dynamic applications, this value can be set to 1 (only BIS VL).

Startup

Tag type

The following data carriers are available for the BIS V-6106 processor unit.

The data carriers contain additional memory ranges for configuration and protected data. These ranges cannot be processed using the BIS V-6106 processor unit.

Balluff data carrier type	Manufacturer	Description	Memory capacity	Memory type
BIS M-101	NXP	Mifare Classic	752 Byte	EEPROM
BIS M-1 10	NXP	Mifare Classic	736 Byte	EEPROM

Mifare data carriers (for read/write heads BIS VM):

ISO 15693 data carriers (for read/write heads BIS VM):

Balluff data carrier type	Manufacturer	Description	Memory capacity	Memory type
BIS M-1 02	Fujitsu	MB89R118	2000 Byte	FRAM
BIS M-1 03	NXP	SL2ICS20	112 Byte	EEPROM
BIS M-1 04 *	Texas Instruments	TAG-IT Plus	256 Byte	EEPROM
BIS M-1 05*	Infineon	SRF55V02P	224 Byte	EEPROM
BIS M-1 06 *	EM	EM4135	288 Byte	EEPROM
BIS M-1 07	Infineon	SRF55V10P	992 Byte	EEPROM
BIS M-1 08 *	NXP	SL2ICS530	160 Byte	EEPROM
BIS M-1 09*	NXP	SL2ICS500	32 Byte	EEPROM
BIS M-1 11	Balluff	BIS M-1	8192 Byte	FRAM
BIS M-1 13	Balluff	BIS M-1	32768 Byte	FRAM
BIS M-1 14	Balluff	BIS M-1	65536 Byte	FRAM
BIS M-1 15	Balluff	BIS M-1	161072 Byte	FRAM
BIS M-1 20	Fujitsu	MB89R112	8192 Byte	FRAM

* On request

For read/write heads BIS VL:

Balluff data carrier type	Manufacturer	Description	Memory capacity	Memory type
BIS L-1 01	NXP	Hitag1	192 bytes	EEPROM
BIS L-2 03	EM	EM4x02	5 bytes (read-only)	_
BIS L-1 05	NXP	HitagS	192 bytes	EEPROM

For read/write heads BIS C (with adapter):

Balluff data carrier type	Manufacturer	Memory capacity	Memory type	Memory organization
BIS C-1 04	Balluff	511 Byte	EEPROM	32-byte blocks
BIS C-1 05	Balluff	1023 Byte	EEPROM	32-byte blocks
BIS C-1 11	Balluff	2047 Byte	EEPROM	64-byte blocks
BIS C-1 32	Balluff	8192 Byte	FRAM	64-byte blocks

```
Startup
                                 Note
Tag type
                          i
                                 To achieve the read times specified on page 64 in dynamic operation, the Tag Type
                                 parameter has to be set to "BIS C 32 Byte" or "BIS C 64 Byte" on the respective
                                 head.
                       For read/write heads BIS VU:
                        Balluff data carrier type
                                                        Manufacturer
                                                                                        Memory capacity
                        BIS U-1
                                                        Balluff
                                                                                        See Data Sheet
                                 Note
                          i
                                 The read/write head BIS VU generally supports data carriers regardless of
                                 manufacturer, that meet the standards set by EPCglobal™ Class 1 Generation 2 or
                                 ISO IEC 18000-63.
IO-Link port
                       The IO-Link port of the BIS V-6106 can be operated as a digital standard I/O or as an IO-Link
function
                       port.
                       Configuration options:
                          0: Standard I/O
                       - 1: IO-Link functionality
Cycle time
                       The cycle time controls the timing for triggering the IO-Link device. The factory default setting is
                       0 (Auto). It is recommended that this value be retained.
                       The cycle time is stored in the IO-Link device (slave) and is detected automatically. Only times
                       that are slower than the automatically selected times can be set manually.
Validation type
                       Whether a connected IO-Link device receives access to the IO-Link master can be controlled
                       using validation.
                       Configuration options:
                          0
                          No validation
                          1 Compatible
                          Only allows communication to the IO-Link master for devices whose vendor ID (VID) and
                          device ID (DID) correspond to the configured values.
                          2 Identical
                          See "1 Compatible"; in addition, the serial number of the IO-Link device is checked
IOL Vendor ID
                       Vendor ID for the IO-Link device (refer to the manual for the device)
(VID)
IOL Device ID
                       Device ID for the IO-Link device (refer to the manual for the device)
(DID)
IOL Serial
                       Serial number for the IO-Link device (if available; refer to the IO-Link device's type plate)
number, optional
```

5 Startup

Parameter server, optional	Automatic upload (IO-Link slave \rightarrow IO-Link master) or download (IO-Link master \rightarrow IO-Link slave) can be switched on using this parameter. For automatic upload, the parameter configuration is read when an IO-Link device is plugged in. For automatic download, the parameter configuration is transmitted to the device when an IO-Link device is plugged in.
	Background: The automatic upload makes it possible to read in the parameter configuration of a <i>correctly</i> configured device when plugging one in. If an IO-Link device has to be replaced, the previously read in parameter configuration from the <i>old</i> device is transferred to the <i>new</i> device when it is plugged in.
	 The "Upload" option can be disabled by having a valid parameter set read. Configuration options: 8X_{hex}: Switch on X1_{hex}: Switch on upload X2_{hex}: Switch on download

7.1 Function Principle of the BIS V-6106

7

Two buffers are needed to exchange data and commands between the processor unit and the host control system (input buffer and output buffer). The buffer contents are exchanged using cyclical polling. The buffer content depends on the cycle in which it is written (for example, control commands at the beginning of a job).

When writing to the buffer, the transmitted data from the previous cycle is overwritten. Unwritten bytes are not deleted and retain their data content.

Process data input (Assembly 100, T->0)

Instance	100
Data length	308
Bytes 063	RFID head 1, 64 bytes
Bytes 64127	RFID head 2, 64 bytes
Bytes 128191	RFID head 3, 64 bytes
Bytes 192255	RFID head 4, 64 bytes
Byte 256	Pin 4 input data (if port was not configured as IO-Link)
Byte 257	Short circuit status
Byte 258	Overload status (only if port was not configured as standard I/O)
Byte 259	Power status: Bit 0 = No actuator supply Bit 1 = Sensor power Bit 2 = Actuator power
Bytes 260291	IO-Link process data, 32 bytes
Byte 292	IO-Link status
Byte 293	IO-Link error
Bytes 294295	IO-Link vendor ID, 2 bytes
Bytes 296298	IO-Link device ID, 3 bytes
Bytes 299307	IO-Link 3 events for every 3 bytes

Process data output (Assembly 101, 0->T)

Instance	101
Data length	292
Bytes 063	RFID head 1, 64 bytes
Bytes 64127	RFID head 2, 64 bytes
Bytes 128191	RFID head 3, 64 bytes
Bytes 192255	RFID head 4, 64 bytes
Byte 257	IO-Link pin 4 restart output after short circuit
Byte 258	Reserved
Byte 259	IO-Link control: Bit 0 = Red LED on display on Bit 1 = Green LED on display on Bit 2 = Display lock/PLC lock
Bytes 260291	IO-Link process data, 32 bytes

Device Functions

7.2 Process Data Buffer

Output buffer

The control commands for the identification system and the data to be written to the data carrier are transmitted via the output buffer.

Bit No. Subaddress	7	6	5	4	3	2	1	0
00 _{hex} = Bit Header		TI	KA			GR		AV
01 _{hex}		Com	mand Ider	ntifier		or	Da	ata
02 _{hex}	Start	address (l	_ow Byte)	or progran	n No.	or	Da	ata
03 _{hex}		Start a	ddress (hig	h byte)		or	Da	ata
04 _{hex}		Number	of bytes (l	ow byte)		or	Da	ata
05 _{hex}		Number of bytes (high byte)					Da	ata
06 _{hex}	Data							
	Data							
Last Byte = Bit Header		TI	KA			GR		AV

Assignment and explanation

Subaddress	Bit name	Meaning	Description of Function
00 _{hex} /last byte	TI	Toggle Bit In	Controller is ready to receive additional data (read job).
	KA	Head shutoff	Shuts off the R/W head's antenna. Tag detection no longer takes place. CP and MT are 0.
	GR	Default state	Cancels the current job for this R/W head and puts the channel into a basic state. The R/W head can then be used again once GR = 0 and the controller has acknowledged this with BB = 1. CP and MT are 0.
	AV	Job	A job is present.

Input buffer

7

The input buffer is used to send the data read from the identification system, the designations, and the status codes to the host control system.

Bit No. Subaddress	7	6	5	4	3	2	1	0
00 _{hex} = Bit Header	BB	HF	ТО	MT	AF	AE	AA	CP
01 _{hex}	S	Status code	Э	C	or		Data	
02 _{hex}	Data							
	Data							
Last Byte = Bit Header	BB	HF	ТО	MT	AF	AE	AA	CP

Assignment and explanation

Subaddress	Bit name	Meaning	Description of Function
00 _{hex} /last byte	BB	Ready for Operation	After powering up or after a reset via the GR bit, the BB bit indicates that the corresponding channel is ready.
	HF	Head error	Cable break to the R/W head.
	то	Toggle Bit Out	Read: Additional data is being provided by the identification system. Write operation: Identification system can accept additional data.
	MT	Multiple Tag	More than 1 data carrier is in the R/W head's field (only in BIS VL and VM).
	AF	Job Error	A job was processed incorrectly or was canceled.
	AE	Job End	A job was completed without errors.
	AA	Job Start	A job was detected and started.
	CP	Code Present	A data carrier has been detected.

Structure of the input buffer

The structure of the process data buffer is identical for all commands.

Subaddress	Meaning	Description of Function
00 _{hex}	1st Bit Header	
01 _{hex}	Status code	Provides information on the status of a query.
02 _{hex}	Data	Transmission of data that was read from the data carrier.
	Data	Transmission of data that was read from the data carrier.
Last byte	2nd Bit Header	If the 1st and 2nd bit headers match, the data is valid.

Note

Displaying the "multiple tag function" (MT) is not possible with BIS C read/write heads.

Input buffer

7

Status codes

Status code	Description of Function
00 _{hex}	Everything OK.
01 _{hex}	Job cannot be run because there is no data carrier in range of the read/write head.
02 _{hex}	Cannot read the data carrier.
03 _{hex}	Data carrier was removed from the R/W head's range during reading.
04 _{hex}	Cannot write to the data carrier.
05 _{hex}	Data carrier was removed from the R/W head's range during writing.
07 _{hex}	No or invalid command identifier for set AV bit or the number of bytes is 00_{hex} .
09 _{hex}	R/W head cable break or no R/W head connected.
0D _{hex}	Communication to the R/W head disrupted.
OE _{hex}	CRC for the read data and CRC for the data carrier do not agree.
OF _{hex}	1st and 2nd bit header are not the same. The 2nd bit header must be used.
20 _{hex}	Address assignment of the read/write job is outside the memory range of the data carrier.
21 _{hex}	This function is not possible for this data carrier.
30 _{hex}	License key incorrect.
31 _{hex}	Invalid parameter set.
32 _{hex}	Password required.
33 _{hex}	Password invalid.
34 _{hex}	Memory area is locked.
35 _{hex}	Value range of the parameter incorrect.

Description of the Code Present (CP) and Multiple Tag (MT) bits

СР	МТ	Meaning
0	0	No tag in the field
1	0	Exactly one tag in the field. Automatic reading is OK (if configured).
0	1	More than one data carrier is in the field. They cannot be processed.
1	1	Does not occur.

i N

Note

Displaying the "multiple tag function" (MT) is not possible with BIS C read/write heads.

Command Identifier 00_{hex} : No Command Present

Structure of the commands for read/write heads

Subaddress	Meaning	Description of Function
00 _{hex}	1st Bit Header	
01 _{hex}	Command Identifier	00 _{hex} : No command present.
Last byte	2nd Bit Header	

Structure of the commands for read/write heads

Command designator 01_{hex}: Read from data carrier

Reads USER data from the specified start address. The data length is equal to the number of bytes.

When using a data carrier with expanded memory, the *Read Data Carrier* command can also be executed as a command with 24-bit addresses.

Refer to: Command Identifier 81_{hex}, Read Data Carrier with 24-bit Addresses.

Note

UHF data carriers, depending on the type, provide different memory banks. The read/ write head BIS VU can be configured with respect to the memory bank in order to handle these memory banks. The memory bank is preset at the factory to USER data. Please refer to the manual for the UHF read/write head as well as the data sheet for the data carrier.

Subaddress	Meaning	Description of Function
00 _{hex}	1st Bit Header	
01 _{hex}	Command Identifier	01 _{hex} : Read from data carrier.
02 _{hex}	Start address (low byte)	Start address for reading.
03 _{hex}	Start address (high byte)	Start address for reading.
04 _{hex}	Number of bytes (low byte)	Number of bytes to be read starting from the start address.
05 _{hex}	Number of bytes (high byte)	Number of bytes to be read starting from the start address.
	None	No meaning
Last byte	2nd Bit Header	If the 1st and 2nd bit headers match, the data is valid.

If execution is successful, the response is passed to the input buffer in the following format:

Subaddress	Meaning	Description of Function
00 _{hex}	1st Bit Header	
01 _{hex}	Data	Transmission of the data that is to be written to the data carrier.
	Data	Transmission of the data that is to be written to the data carrier.
Last byte	2nd Bit Header	If the 1st and 2nd bit headers match, the data is valid.

Depending on the number of bytes to read and the configured buffer size, multiple bus cycles may be necessary to transfer the data.

7

Structure of the commands for read/write heads

Command Identifier 81_{hex}: Read Data Carrier with 24-bit Addresses

When assigning addresses to data carriers with expanded memory, the start address and number of bytes can be specified as 24-bit values. Information about executing the command as well as about return values are drawn from the 01_{hex} command (see "Command Identifier 00_{hex} : No Command Present").

Subaddress	Meaning	Description of Function
00 _{hex}	1st Bit Header	
01 _{hex}	Command Identifier	01 _{hex} : Read from data carrier.
02 _{hex}	Start address (low byte)	Start address for reading.
03 _{hex}	Start address (middle byte)	Start address for reading.
04 _{hex}	Start address (high byte)	Start address for reading.
05 _{hex}	Number of bytes (low byte)	Number of bytes to be read starting from the start address.
06 _{hex}	Number of bytes (middle byte)	Number of bytes to be read starting from the start address.
07 _{hex}	Number of bytes (high byte)	Number of bytes to be read starting from the start address.
	None	No meaning
Last byte	2nd Bit Header	Valid data is present if the 1st and 2nd bit strings match.

Structure of the commands for read/write heads

Command Identifier 02_{hex} : Write to Data Carrier

Writes USER data at the specified start address. The data length is equal to the number of bytes. When using a data carrier with expanded memory, the *Write to Data Carrier* command can also be executed as a command with 24-bit addresses.

Refer to: Command Identifier 81_{hex} , Read Data Carrier with 24-bit Addresses.

Note

A password is required to write to read-only data carriers.

Write commands that are attempted with an invalid password will be acknowledged with the status message *Password Required* or *Password Invalid* (see "Status codes" on page 28).

Details about access passwords can be found in the manual of the UHF read/write head used.

Subaddress	Meaning	Description of Function
00 _{hex}	1st Bit Header	
01 _{hex}	Command Identifier	02 _{hex} : Write to data carrier.
02 _{hex}	Start address (low byte)	Start address to be written from.
03 _{hex}	Start address (high byte)	Start address to be written from.
04 _{hex}	Number of bytes (low byte)	Number of bytes to be written starting from the start address.
05 _{hex}	Number of bytes (high byte)	Number of bytes to be written starting from the start address.
	None	No meaning
Last byte	2nd Bit Header	If the 1st and 2nd bit headers match, the data is valid.

Data is accepted from the processor unit only after the command has been accepted by the processor unit and acknowledged.

Subaddress	Meaning	Description of Function
00 _{hex}	1st Bit Header	
01 _{hex}	Data	Transmission of the data that is to be written to the data carrier.
	Data	Transmission of the data that is to be written to the data carrier.
	None	No meaning
Last byte	2nd Bit Header	If the 1st and 2nd bit headers match, the data is valid

Input Buffer: Status Message

Subaddress	Meaning	Description of Function
00 _{hex}	1st Bit Header	
01 _{hex}	Data	Provides information on the status of a query.
	Data	No meaning
Last byte	2nd Bit Header	If the 1st and 2nd bit headers match, the data is valid.

7

Structure of the commands for read/write heads

Command designator 82_{hex} : Write to data carrier with 24-bit addresses

When assigning addresses to data carriers with expanded memory, the start address and number of bytes can be specified as 24-bit values. Information about executing the command as well as about return values are drawn from the 02_{hex} command (see "Command Identifier 02_{hex} : Write to Data Carrier").

Subaddress	Meaning	Description of Function
00 _{hex}	1st Bit Header	
01 _{hex}	Command Identifier	02 _{hex} : Write to data carriers.
02 _{hex}	Start address (low byte)	Start address to be written from.
03 _{hex}	Start address (middle byte)	Start address to be written from.
04 _{hex}	Start address (high byte)	Start address to be written from.
05 _{hex}	Number of bytes (low byte)	Number of bytes to be written starting from the start address.
06 _{hex}	Number of bytes (middle byte)	Number of bytes to be written starting from the start address.
07 _{hex}	Number of bytes (high byte)	Number of bytes to be written starting from the start address.
	None	No meaning
Last byte	2nd Bit Header	Valid data is present if the 1st and 2nd bit strings match.

Command designator 03_{hex}: Display output

Output of a predetermined character string on the display.

Subaddress	Meaning	Description of Function
00 _{hex}	1st Bit Header	
01 _{hex}	Command Identifier	03 _{hex} : Display output.
02 _{hex}	Data	Characters for display output.
	Data	Characters for display output.
Last byte	2nd Bit Header	If the 1st and 2nd bit headers match, the data is valid.

Input Buffer: Status Message

Subaddress	Meaning	Description of Function
00 _{hex}	1st Bit Header	
01 _{hex}	Status code	Provides information on the status of a query.
	None	No meaning
Last byte	2nd Bit Header	If the 1st and 2nd bit headers match, the data is valid.

Structure of the commands for read/write heads

Command designator 07_{hex}: Store the start address for the "Auto Read" function

Configuring the start address after the data is read with the Auto Read function. For more details, see the "Description of individual parameters" chapter on page 18.

Subaddress	Meaning	Description of Function
00 _{hex}	1st Bit Header	
01 _{hex}	Command Identifier	07 _{hex} : Save the start address for the Auto Read function.
02 _{hex}	Start address (low byte)	Address for the "Auto Read" function starting from which the data carrier is read. The value is stored in the EEPROM.
03 _{hex}	Start address (high byte)	Address for the "Auto Read" function starting from which the data carrier is read. The value is stored in the EEPROM.
	None	No meaning
Last byte	2nd Bit Header	If the 1st and 2nd bit headers match, the data is valid.

Input Buffer: Status Message

Subaddress	Meaning	Description of Function
00 _{hex}	1st Bit Header	
01 _{hex}	Status code	Provides information on the status of a query.
	None	No meaning
Last byte	2nd Bit Header	If the 1st and 2nd bit headers match, the data is valid.

Structure of the commands for read/write heads

Command Identifier $\mathbf{87}_{hex}$: Save the Start Address for the Auto Read Function with 24-bit addresses

When assigning addresses to data carriers with expanded memory, the start address and number of bytes can be specified as 24-bit values. Information about executing the command as well as about return values are drawn from the 07_{hex} command (see "Command designator 07_{hex} : Store the start address for the "Auto Read" function").

Subaddress	Meaning	Description of Function
00 _{hex}	1st Bit Header	
01 _{hex}	Command Identifier	07 _{hex} : Save the start address for the Auto Read function.
02 _{hex}	Start address (low byte)	Address for the "Auto Read" function starting from which the data carrier is read. The value is stored in the EEPROM.
03 _{hex}	Start address (middle byte)	Address for the "Auto Read" function starting from which the data carrier is read. The value is stored in the EEPROM (optional, 24-bit command).
04 _{hex}	Start address (high byte)	Address for the "Auto Read" function starting from which the data carrier is read. The value is stored in the EEPROM.
	None	No meaning
Last byte	2nd Bit Header	Valid data is present if the 1st and 2nd bit strings match.

7

Structure of the commands for read/write heads

Command designator 09_{hex} : Type and serial number

If a data carrier is recognized in the active read/write zone of the read/write head, this command will return the read-write head type as well as the data carrier type and serial number of the detected data carrier.

Note

For details about read/write head types and data carrier types, see the "Description of individual parameters" chapter on page 18.

Subaddress	Meaning	Description of Function
00 _{hex}	1st Bit Header	
01 _{hex}	Command Identifier	09 _{hex} : Read out type and serial number.
	None	No meaning
Last byte	2nd Bit Header	If the 1st and 2nd bit headers match, the data is valid.

If execution is successful, the response is passed to the input buffer in the following format:

Subaddress	Meaning	Description of Function
00 _{hex}	1st Bit Header	
01 _{hex}	Length	Length (number of bytes including length)
02 _{hex}	Read/write head type	C = 01/VL = 02/VM = 03/VU = 04
03 _{hex}	Data Carrier Type	Data Carrier Type
04 _{hex}	Serial Number / UID	UID data that was transmitted from the data carrier.
05 _{hex}	Serial Number / UID	UID data that was transmitted from the data carrier.
	None	No meaning
Last byte	2nd Bit Header	If the 1st and 2nd bit headers match, the data is valid.

7

Structure of the commands for read/write heads

Command designator 11_{hex}: Copy data between data carriers

Copy data from one data carrier to another. The specified number of bytes will be copied from the source start address in the source data carrier to the target start address in the target data carrier. Care must be taken to ensure that the memory areas of the source and target data carriers are compatible.

Subaddress	Meaning	Description of Function
00 _{hex}	1st Bit Header	
01 _{hex}	Command Identifier	11 _{hex} : Copy data carrier.
02 _{hex}	Source start address (low byte)	Copy the start address of the source data carrier for the function from which copying is to start.
03 _{hex}	Source start address (high byte)	Copy the start address of the source data carrier for the function from which copying is to start.
04 _{hex}	Target start address (low byte)	Copy the start address of the target data carrier for the function from which copying is to start.
05 _{hex}	Target start address (high byte)	Copy the start address of the target data carrier for the function from which copying is to start.
06 _{hex}	Number of bytes (low byte)	Number of bytes to be copied starting from the source start address.
07 _{hex}	Number of bytes (high byte)	Number of bytes to be copied starting from the source start address.
08 _{hex}	Target R/W head number	Number of the read/write head that the target data carrier is in front of.
	None	No meaning
Last byte	2nd Bit Header	If the 1st and 2nd bit headers match, the data is valid.

Input Buffer: Status Message

Subaddress	Meaning	Description of Function
00 _{hex}	1st Bit Header	
01 _{hex}	Status code	Provides information on the status of a query.
	None	No meaning
Last byte	2nd Bit Header	If the 1st and 2nd bit headers match, the data is valid.

7

Structure of the commands for read/write heads

Command Identifier 91_{hex} : Copy Data Between Data Carriers with 24-bit Addresses

When assigning addresses to data carriers with expanded memory, the start address and number of bytes can be specified as 24-bit values. Information about executing the command as well as about return values are drawn from the 11_{hex} command (see "Command designator 11_{hex} : Copy data between data carriers").

Subaddress	Meaning	Description of Function
00 _{hex}	1st Bit Header	
01 _{hex}	Command Identifier	11 _{hex} : Copy data.
02 _{hex}	Source start address (low byte)	Copy the start address of the source data carrier for the function from which copying is to start.
03 _{hex}	Source Start Address (Middle Byte)	Copy the start address of the source data carrier for the function from which copying is to start.
04 _{hex}	Source start address (high byte)	Copy the start address of the source data carrier for the function from which copying is to start.
05 _{hex}	Target start address (low byte)	Copy the start address of the target data carrier for the function from which copying is to start.
06 _{hex}	Target Start Address (Middle Byte)	Copy the start address of the target data carrier for the function from which copying is to start.
07 _{hex}	Target start address (high byte)	Copy the start address of the target data carrier for the function from which copying is to start.
08 _{hex}	Number of bytes (low byte)	Number of bytes to be copied starting from the source start address.
09 _{hex}	Number of bytes (middle byte)	Number of bytes to be copied starting from the source start address.
OA _{hex}	Number of bytes (high byte)	Number of bytes to be copied starting from the source start address.
0B _{hex}	Target R/W head number	Number of the read/write head that the target data carrier is in front of.
	None	No meaning
Last byte	2nd Bit Header	If the 1st and 2nd bit headers match, the data is valid.

Structure of the commands for read/write heads

Command designator 12_{hex}: Initialize CRC_16 data check

The memory area of the data carrier used is prepared for use with a CRC data check. It is initialized by writing USER data with a checksum.

If the CRC data check is enabled in the processor unit, then read and write commands on a memory area that is not initialized leads to a CRC error.

Note

CRC data checks reduce the usable storage area in the data carrier, but it increases the integrity of the data (see the "Description of individual parameters" chapter on page 18).

Subaddress	Meaning	Description of Function
00 _{hex}	1st Bit Header	
01 _{hex}	Command Identifier	12 _{hex} : Initialize data carrier.
02 _{hex}	Start address (low byte)	Start address from which the CRC_16 data check is to be carried out.
03 _{hex}	Start address (high byte)	Start address from which the CRC_16 data check is to be carried out.
04 _{hex}	Number of bytes (low byte)	Start address from which the CRC_16 data check is to be carried out.
05 _{hex}	Number of bytes (high byte)	Start address from which the CRC_16 data check is to be carried out.
	None	No meaning
Last byte	2nd Bit Header	If the 1st and 2nd bit headers match, the data is valid.

Data is accepted from the processor unit only after the command has been accepted by the processor unit and acknowledged.

Subaddress	Meaning	Description of Function
00 _{hex}	1st Bit Header	
01 _{hex}	Data	Transmission of the data that is to be written to the data carrier.
	Data	Transmission of the data that is to be written to the data carrier.
	None	No meaning
Last byte	2nd Bit Header	If the 1st and 2nd bit headers match, the data is valid.

Subaddress	Meaning	Description of Function
00 _{hex}	1st Bit Header	
01 _{hex}	Status code	Provides information on the status of a query.
	None	No meaning
Last byte	2nd Bit Header	If the 1st and 2nd bit headers match, the data is valid.

7

Structure of the commands for read/write heads

Command Identifier 92_{hex} : Initialize CRC_16 Data Check with 24-bit Addresses

When assigning addresses to data carriers with expanded memory, the start address and number of bytes can be specified as 24-bit values. Information about executing the command as well as about return values are drawn from the 12_{hex} command (see "Command designator 12_{hex} : Initialize CRC_16 data check").

Subaddress	Meaning	Description of Function
00 _{hex}	1st Bit Header	
01 _{hex}	Command Identifier	12 _{hex} : Initialize data carrier.
02 _{hex}	Start address (low byte)	Start address from which the CRC_16 data check is to be carried out.
03 _{hex}	Start address (middle byte)	Start address from which the CRC_16 data check is to be carried out.
04 _{hex}	Start address (high byte)	Start address from which the CRC_16 data check is to be carried out.
05 _{hex}	Number of bytes (low byte)	Start address from which the CRC_16 data check is to be carried out.
06 _{hex}	Number of bytes (middle byte)	Start address from which the CRC_16 data check is to be carried out.
07 _{hex}	Number of bytes (high byte)	Start address from which the CRC_16 data check is to be carried out.
	None	No meaning
Last byte	2nd Bit Header	If the 1st and 2nd bit headers match, the data is valid.

7

Structure of the commands for read/write heads

Command designator 32_{hex}: Write constant value to data carrier

Writes a constant value to the memory area, which is indicated with a start address and number of bytes.

Subaddress	Meaning	Description of Function
00 _{hex}	1st Bit Header	
01 _{hex}	Command Identifier	32 _{hex} : Write a constant value to the data carrier.
02 _{hex}	Start address (low byte)	Start address to be written from.
03 _{hex}	Start address (high byte)	Start address to be written from.
04 _{hex}	Number of bytes (low byte)	Number of bytes to be written starting from the start address.
05 _{hex}	Number of bytes (high byte)	Number of bytes to be written starting from the start address.
	None	No meaning
Last byte	2nd Bit Header	If the 1st and 2nd bit headers match, the data is valid.

Data is accepted from the processor unit only after the command has been accepted by the processor unit and acknowledged.

Subaddress	Meaning	Description of Function
00 _{hex}	1st Bit Header	
01 _{hex}	Data	Value that is to be written to the data carrier.
	None	No meaning
Last byte	2nd Bit Header	If the 1st and 2nd bit headers match, the data is valid.

Subaddress	Meaning	Description of Function
00 _{hex}	1st Bit Header	
01 _{hex}	Data	Value that is to be written to the data carrier.
	None	No meaning
Last byte	2nd Bit Header	If the 1st and 2nd bit headers match, the data is valid.

7

Structure of the commands for read/write heads

Command Identifier $\mathrm{B2}_{\mathrm{hex}}$: Write Constant Value to Data Carrier with 24-bit Addresses

When assigning addresses to data carriers with expanded memory, the start address and number of bytes can be specified as 24-bit values. Information about executing the command as well as about return values are drawn from the 12_{hex} command (see "Command designator 12_{hex} : Initialize CRC_16 data check").

Subaddress	Meaning	Description of Function
00 _{hex}	1st Bit Header	
01 _{hex}	Command Identifier	32 _{hex} : Write a constant value to the data carrier.
02 _{hex}	Start address (low byte)	Start address to be written from.
03 _{hex}	Start address (middle byte)	Start address to be written from.
04 _{hex}	Start address (high byte)	Start address to be written from.
05 _{hex}	Number of bytes (low byte)	Number of bytes to be written starting from the start address.
06 _{hex}	Number of bytes (middle byte)	Number of bytes to be written starting from the start address.
07 _{hex}	Number of bytes (high byte)	Number of bytes to be written starting from the start address.
	None	No meaning
Last byte	2nd Bit Header	Valid data is present if the 1st and 2nd bit strings match.

7

Specific commands for BIS VU read/write heads

Note

Details and more information about the available parameters as well as BIS VU-specific commands can be found in the manual of the BIS VU read/write head used (Available at www.balluff.com).

Command Identifier 40_{hex}: Select (Select Data Carrier in Multi-tag Mode)

In the Multi-tag Mode, the Select command selects a single data carrier from within a data carrier population. A data carrier that is located in the active read/write zone of the antenna is accessed and selected directly based on its EPC or its TID and is then available for further processing.

Subaddress	Meaning	Description of Function
00 _{hex}	1st Bit Header	
01 _{hex}	Command Identifier	40 _{hex} : Select Tag (Selecting the data carrier).
02 _{hex}	Type EPC/TID	EPC = 0 TID = 1
03 _{hex}	No. of bytes	Number of bytes for the data carrier identifier (EPC or TID) that is transmitted in subsequent cycles.
04 _{hex}	Reserved	Set to 0.
05 _{hex}	Reserved	Set to 0.
06 _{hex}	Reserved	Set to 0.
	None	No meaning
Last byte	2nd Bit Header	Valid data is present if the 1st and 2nd bit strings match.

Data is accepted from the processor unit only after the command has been accepted by the processor unit and acknowledged.

Subaddress	Meaning	Description of Function
00 _{hex}	1st Bit Header	
01 _{hex}	Data	1st byte of the data carrier identifier (EPC or TID)
	Data	Other bytes of the data carrier identifier (EPC or TID)
	None	No meaning
Last byte	2nd Bit Header	Valid data is present if the 1st and 2nd bit strings match.

Subaddress	Meaning	Description of Function
00 _{hex}	1st Bit Header	
01 _{hex}	Status code	Provides information on the status of a query.
	None	No meaning
Last byte	2nd Bit Header	If the 1st and 2nd bit headers match, the data is valid.

7

Specific commands for BIS VU read/write heads

Command Identifier 41_{hex}: Unselect (Undo a Data Carrier Selection)

The Unselect command undoes one data carrier selection that was carried out with the Select command. If a selection is not active, the status will remain unchanged.

Subaddress	Meaning	Description of Function
00 _{hex}	1st Bit Header	
01 _{hex}	Command Identifier	41 _{hex} : Unselect (Undo the data carrier selection).
	None	No meaning
Last byte	2nd Bit Header	If the 1st and 2nd bit headers match, the data is valid.

Subaddress	Meaning	Description of Function
00 _{hex}	1st Bit Header	
01 _{hex}	Status code	Provides information on the status of a query.
	None	No meaning
Last byte	2nd Bit Header	If the 1st and 2nd bit headers match, the data is valid.

Specific commands for BIS VU read/write heads

Command Identifier 42_{hex}: Read from EPC

Reads the EPC memory area of a data carrier that was previously selected with the Select command.

In Single-Tag mode, that is, if only one data carrier is located in front of the active read/write zone antenna, then the Select command can be disregarded. The *Read from EPC* command will be automatically executed on the data carrier that is located in front of the antenna.

If the order is executed without the preceding Select when more than one data carrier is located in front of the antenna, the command will be acknowledged with the Multiple-Tags status code.

Subaddress	Meaning	Description of Function
00 _{hex}	1st Bit Header	
01 _{hex}	Command Identifier	42 _{hex} : Read from EPC.
	None	No meaning
Last byte	2nd Bit Header	Valid data is present if the 1st and 2nd bit strings match.

If execution is successful, the response is passed to the input buffer in the following format:

Subaddress	Meaning	Description of Function
00 _{hex}	1st Bit Header	
01 _{hex}	No. of bytes	Number of bytes in the read EPC.
02 _{hex}	EPC Data	Transmission of EPC data that was read from the data carrier.
	EPC Data	Transmission of EPC data that was read from the data carrier.
	None	No meaning
Last byte	2nd Bit Header	Valid data is present if the 1st and 2nd bit strings match.

or

Subaddress	Meaning	Description of Function
00 _{hex}	1st Bit Header	
01 _{hex}	Status code	Provides information about the status of a query:
	None	No meaning
Last byte	2nd Bit Header	If the 1st and 2nd bit headers match, the data is valid.

Specific commands for BIS VU read/write heads

Command Identifier 43_{hex}: Write to EPC

Writes to the EPC memory area of a data carrier that was previously selected with the Select command.

In Single-Tag mode, that is, if only one data carrier is located in front of the active read/write zone antenna, then the Select command can be disregarded. The *Write to EPC* command will be automatically executed on the data carrier that is located in front of the antenna.

If the order is executed without the preceding Select and more than one data carrier is located in front of the antenna, the command will then be acknowledged with the Multiple-Tags status code. The EPC can have a length of 2...62 bytes; the number of bytes must be even.

Subaddress Description of Function Meaning 00_{hex} 1st Bit Header 01_{hex} Command Identifier 43_{hex}: Write to EPC. Number of bytes for the EPC to be written. 02_{hex} No. of bytes No meaning None 2nd Bit Header Last byte If the 1st and 2nd bit headers match, the data is valid.

Data is accepted from the processor unit only after the command has been accepted by the processor unit and acknowledged.

Subaddress	Meaning	Description of Function
00 _{hex}	1st Bit Header	
01 _{hex}	EPC Data	Transmission of the EPC data that is to be written to the data carrier.
02 _{hex}	EPC Data	Transmission of the EPC data that is to be written to the data carrier.
	None	No meaning
Last byte	2nd Bit Header	If the 1st and 2nd bit headers match, the data is valid.

Subaddress	Meaning	Description of Function
00 _{hex}	1st Bit Header	
01 _{hex}	Status code	Provides information on the status of a query.
	None	No meaning
Last byte	2nd Bit Header	If the 1st and 2nd bit headers match, the data is valid.

Specific commands for BIS VU read/write heads

Command Identifier 44_{hex}: Read from TID

Reads the TID memory area of a data carrier that was previously selected with the Select command.

In Single-Tag mode, that is, if only one data carrier is located in front of the active read/write zone antenna, then the Select command can be disregarded. The *Read from EPC* command will be automatically executed on the data carrier that is located in front of the antenna.

Note

If the order is executed without the preceding Select and more than one data carrier is located in front of the antenna, the command will then be acknowledged with the Multiple-Tags status code.

The length of the TID data field is defined by a parameter setting.

Subaddress	Meaning	Description of Function
00 _{hex}	1st Bit Header	
01 _{hex}	Command Identifier	44 _{hex} : Read from TID.
	None	No meaning
Last byte	2nd Bit Header	If the 1st and 2nd bit headers match, the data is valid.

If execution is successful, the response is passed to the input buffer in the following format:

Subaddress	Meaning	Description of Function
00 _{hex}	1st Bit Header	
01 _{hex}	TID Data	Transmission of TID data that was read from the data carrier.
	TID Data	Transmission of TID data that was read from the data carrier.
	None	No meaning
Last byte	2nd Bit Header	Valid data is present if the 1st and 2nd bit strings match.

or

Subaddress	Meaning	Description of Function
00 _{hex}	1st Bit Header	
01 _{hex}	Status code	Provides information on the status of a query.
	None	No meaning
Last byte	2nd Bit Header	If the 1st and 2nd bit headers match, the data is valid.

7

Specific commands for BIS VU read/write heads

Command Identifier 45_{hex}: Configure the Transmission Power

The transmission power for the antenna (ERP or EIRP), which is specified as a value in quarter dBm increments, affects the maximum range of the read/write range of the antenna.

The maximum transmission power depends on the read/write head used.

Example:

Configuring a transmission power of 21 dBm (125 mW): 21 * 4 = 84 => (54_{hex})

The entered value is not saved permanently and will be restored to the default value when the Reader is rebooted.

Subaddress	Meaning	Description of Function
00 _{hex}	1st Bit Header	
01 _{hex}	Command Identifier	45 _{hex} : Set antenna power.
02 _{hex}	Antenna power	Antenna power (ERP/EIRP) in increments of n * 0.25 dBm.
		A value of 0 turns off the antenna.
		Example: An antenna power of 20 dBm corresponds to a value of 80 _{hex}
		The entered value is not saved permanently and will be reset to the default value when the Reader is rebooted.
	None	No meaning
Last byte	2nd Bit Header	Valid data is present if the 1st and 2nd bit strings match.

Subaddress	Meaning	Description of Function
00 _{hex}	1st Bit Header	
01 _{hex}	Status code	Provides information on the status of a query.
	None	No meaning
Last byte	2nd Bit Header	If the 1st and 2nd bit headers match, the data is valid.

7

Specific commands for BIS VU read/write heads

Command Identifier 46_{hex}: Read out Transmission Power

Reads out the current transmission power (ERP). The transmission power is returned as a value in the form of quarter dBm.

Example:

Reading out the transmission power returns the value of 54_{hex} (= 84). This corresponds to a transmission power of 21 dBm: 84/4 = 21

Subaddress	Meaning	Description of Function
00 _{hex}	1st Bit Header	
01 _{hex}	Command Identifier	46 _{hex} : Read out antenna power.
	None	No meaning
Last byte	2nd Bit Header	If the 1st and 2nd bit headers match, the data is valid.

If execution is successful, the response is passed to the input buffer in the following format:

Subaddress	Meaning	Description of Function
00 _{hex}	1st Bit Header	
01 _{hex}	Antenna power	Antenna power in increments of n * 0.25 dBm or 0 for disconnected antennae. Example: An antenna power of 20 dBm corresponds to a value of 80 _{hex} .
	None	No meaning
Last byte	2nd Bit Header	Valid data is present if the 1st and 2nd bit strings match.

or

Subaddress	Meaning	Description of Function
00 _{hex}	1st Bit Header	
01 _{hex}	Status code	Provides information on the status of a query.
	None	No meaning
Last byte	2nd Bit Header	If the 1st and 2nd bit headers match, the data is valid.

7

Specific commands for BIS VU read/write heads

Command Identifier 47_{hex}: Read from Multiple Data Carriers

The *Read from Multiple Data Carriers* reads, depending on the configured type, the EPC or the TID of all data carriers that are located in the active read/write area of the antenna.

i Note

The length of the TID or EPC field parameters are configured on the BIS VU read/write head.

Subaddress	Meaning	Description of Function
00 _{hex}	1st Bit Header	
01 _{hex}	Command Identifier	47 _{hex} : Read from multiple data carriers.
02 _{hex}	Туре	EPC (0) or TID (1)
03 _{hex}	Max. number of data carriers	Maximum number of data carriers to be output 1255, (0 = no limit). If the specification is greater than the maximum specification of the connected heads, the lower value applies.
04 _{hex}	Data carrier selection	All = 0 / Selected = 1
	None	No meaning
Last byte	2nd Bit Header	If the 1st and 2nd bit headers match, the data is valid.

If the EPCs transfer with the length of 12 bytes, the response in the input buffer is as follows:

Subaddress	Meaning	Description of Function
00 _{hex}	1st Bit Header	
01 _{hex}	No. of tags	
02 _{hex}	Number of bytes per EPC	12 This corresponds to the length of the longest transmitted EPC configured in the device. EPCs shorter than this length are output right-justified and filled with zeros on the left. In the following, the (number of data carriers read) × (number of bytes per EPC) are transmitted. For 64 bytes per EPC, the actual EPC length in ASCII is specified in the 1st and 2nd byte of the EPC.
03 _{hex}	EPC 1	EPC data uppermost address
	EPC 1	EPC data lowermost address
	EPC 2	EPC data uppermost address
	EPC 2	EPC data lowermost address
	EPC n	EPC data uppermost address
	EPC n	EPC data lowermost address
Last byte	2nd Bit Header	If the 1st and 2nd bit headers match, the data is valid.

7

Specific commands for BIS VU read/write heads Note
As circumstances require, the data must be transmitted over multiple BUS cycles.Example of a received data frame with 2 EPCs and 12 bytes per EPC
(Illustration without bit headers).:EPC 1:E2 FF 00 00 E2 11 90 22 E2 03 01 27EPC 2:E2 00 90 51 32 05 01 74 07 80 C5 BE000000:02 0c 27 01 03 e2 22 90 11 e2 00 00 ff e2 be c5
000010:00010:80 07 74 01 05 32 51 90 00 e2

If the EPCs transfer with the length of 64 bytes, the response in the input buffer is as follows:

Subaddress	Meaning	Description of Function
00 _{hex}	1st Bit Header	
01 _{hex}	No. of tags	
02 _{hex}	Number of bytes per EPC	64 This corresponds to the length of the longest transmitted EPC configured in the device. EPCs shorter than this length are output right-justified and filled with zeros on the left. In the following, the (number of data carriers read) × (number of bytes per EPC) are transmitted. For 64 bytes per EPC, the actual EPC length in ASCII is specified in the 1st and 2nd byte of the EPC.
03 _{hex}	EPC 1 Length	MSB Length (ASCII)
04 _{hex}	EPC 1 Length	LSB Length (ASCII)
05 _{hex}	EPC 1	EPC data uppermost address
	EPC 1	EPC data lowermost address
	EPC 2 Length	MSB Length (ASCII)
	EPC 2 Length	LSB Length (ASCII)
	EPC 2	EPC data uppermost address
	EPC 2	EPC data lowermost address
	EPC n Length	MSB Length (ASCII)
	EPC n Length	LSB Length (ASCII)
	EPC n	EPC data uppermost address
	EPC n	EPC data lowermost address
Last byte	2nd Bit Header	If the 1st and 2nd bit headers match, the data is valid.

As circumstances require, the data must be transmitted over multiple BUS cycles.

Specific commands for BIS VU read/write		eceived data frame with 2 EPCs and 64 bytes per EPC nout bit headers):
heads	EPC 1	
	Length:	48 bytes (34 _{hex} 38 _{hex})
	EPC:	E2 FF 00 00 E2 11 90 22 E2 03 01 27 33 44 55 66 77 88 99 AC 01 02 03 04 05 06 07 08 09 0A 0B 0C 00 00 00 00 00 00 00 00 00 00 00 00 00
	EPC 2	
	Length:	12 bytes (31 _{hex} 32 _{hex})
	EPC:	E2 00 90 51 32 05 01 74 07 80 C5 BE
	Data:	000000: 02 40 34 38 00

7

Specific commands for BIS VU read/write heads

Command Identifier 48_{hex}: Write Parameters

The Write Parameters command transfers parameters to the BIS VU read/write that affect its behavior.

Subaddress	Meaning	Description of Function
00 _{hex}	1st Bit Header	
01 _{hex}	Command Identifier	48 _{hex} : Write parameters.
02 _{hex}	Parameter (Low Byte)	Parameter number
03 _{hex}	Parameter (High Byte)	Parameter number
04 _{hex}	Length	Length of the parameter in bytes
	None	No meaning
Last byte	2nd Bit Header	If the 1st and 2nd bit headers match, the data is valid.

Data is accepted from the processor unit only after the command has been accepted by the processor unit and acknowledged.

Subaddress	Meaning	Description of Function
00 _{hex}	1st Bit Header	
01 _{hex}	Data	Parameter data
	Data	Parameter data
	None	No meaning
Last byte	2nd Bit Header	If the 1st and 2nd bit headers match, the data is valid.

Subaddress	Meaning	Description of Function
00 _{hex}	1st Bit Header	
01 _{hex}	Status code	Provides information on the status of a query.
	None	No meaning
Last byte	2nd Bit Header	If the 1st and 2nd bit headers match, the data is valid.

7

Specific commands for BIS VU read/write heads

Command Identifier 49_{hex}: Read Parameters

Reads out the parameter values that are currently set in the read/write head.

Subaddress	Meaning	Description of Function
00 _{hex}	1st Bit Header	
01 _{hex}	Command Identifier	49 _{hex} : Read parameters.
02 _{hex}	Parameter (Low Byte)	Parameter number
03 _{hex}	Parameter (High Byte)	Parameter number
	None	No meaning
Last byte	2nd Bit Header	If the 1st and 2nd bit headers match, the data is valid.

If execution is successful, the response is passed to the input buffer in the following format:

Subaddress	Meaning	Description of Function
00 _{hex}	1st Bit Header	
01 _{hex}	No. of bytes	Number of bytes of the parameter that is transmitted in the subsequent cycles.
02 _{hex}	Data	Parameter data
	Data	Parameter data
	Data	Parameter data
	Data	Parameter data
Last byte	2nd Bit Header	If the 1st and 2nd bit headers match, the data is valid.

or

Subaddress	Meaning	Description of Function
00 _{hex}	1st Bit Header	
01 _{hex}	Status code	Provides information on the status of a query.
	None	No meaning
Last byte	2nd Bit Header	If the 1st and 2nd bit headers match, the data is valid.

Command Identifier 50_{hex}: Kill

Specific commands for **BIS VU** read/write heads

The Kill command deactivates a data carrier previously selected with the Select command.

Executing the Kill command permanently deactivates the selected data carrier.

The deactivation cannot be undone.

Note

In order to execute the Kill command, a Kill password must first be set and written to the data carrier.

Information about password protection and about locking and unlocking ("Lock") of UHF RFID data carriers can be found in the UHF RFID standards EPCglobal™ Radio Frequency Identity Protocols Class-1 Generation-2 UHF RFID and ISO IEC 18000-63.

The EPCglobal[™] standard is available online at www.gs1.org/standards.

Subaddress	Meaning	Description of Function
00 _{hex}	1st Bit Header	
01 _{hex}	Command Identifier	50 _{hex} : Kill
02 _{hex}	Password 1	1st byte password
03 _{hex}	Password 2	2nd byte password
04 _{hex}	Password 3	3rd byte password
	Password 4 (High Byte)	4th byte password
	None	No meaning
Last byte	2nd Bit Header	If the 1st and 2nd bit headers match, the data is valid.

or

Subaddress	Meaning	Description of Function
00 _{hex}	1st Bit Header	
01 _{hex}	Status code	Provides information on the status of a query.
	None	No meaning
Last byte	2nd Bit Header	If the 1st and 2nd bit headers match, the data is valid.

7

Specific commands for	Command Identifier 53 _{hex} : Bulk Read
BIS VU read/write heads	The <i>Bulk Read</i> command reads the data from a data carrier population. Optionally from all of the data carriers that are found in the active read/write zone of the antenna or from a subset that was previously selected with the Select command.
	The Bulk Read command first reports only the number of data carriers that were detected in the

The Bulk Read command first reports only the number of data carriers that were detected in the active field of the antenna. The data in the data carriers is then read out and transmitted to the controller.

If the data carriers are removed from the active field of the antenna in between the detection and read out stages or if they cannot be successfully read out for other reasons, erroneous data may occur. In which case, the data will be marked as invalid via a check byte at the end of the data block and transmitted to the controller.

Data blocks marked as valid in their check bytes can be used without restrictions.

A maximum of 255 bytes from 255 data carriers can be read at a time.

Subaddress	Meaning	Description of Function
00 _{hex}	1st Bit Header	
01 _{hex}	Command Identifier	53 _{hex} : Bulk Read.
02 _{hex}	Start address (Low Byte)	Start address for reading.
03 _{hex}	Start address (High Byte)	Start address for reading.
04 _{hex}	No. of bytes (Low Byte)	Number of bytes to be read starting from the start address.
05 _{hex}	No. of bytes (High Byte)	Number of bytes to be read starting from the start address.
06 _{hex}	Data carrier selection	All = 0 / Selected = 1
07 _{hex}	Max. Tags	Maximum number of tags.
	None	No meaning
Last byte	2nd Bit Header	If the 1st and 2nd bit headers match, the data is valid.

7

BIS VU read/write heads	Subaddress	Meaning	Description of Function
	00 _{hex}	1st Bit Header	
	01 _{hex}	No. of tags	Number of detected tags
	02 _{hex}	Number of Bytes per Tag	Bytes to be transmitted per tag.
	03 _{hex}	Data 1 [0]	Transmission of the 1st byte that was read from the 1st data carrier.
		Data 1 [1]	Transmission of the 2nd byte that was read from the 1st data carrier.
		Data 1 []	Additional data from the 1st data carrier.
		Check Byte 1	A check byte is transmitted in the last byte from the first data carrier, which indicates whether the data read is valid: 00 _{hex} : Data valid FF _{hex} : Data invalid
		Data 2 [0]	Transmission of the 1st byte that was read from the 2nd data carrier.
		Data 2 [1]	Transmission of the 2nd byte that was read from the 2nd data carrier.
		Data 2 []	Additional data from the 2nd data carrier.
		Check Byte 2	A check byte is transmitted in the last byte from the second data carrier, which indicates whether the data read is valid: 00 _{hex} : Data valid FF _{hex} : Data invalid
		Data n [0]	Transmission of the 1st byte that was read from the n-th data carrier.
		Data n [1]	Transmission of the 2nd byte that was read from the n-th data carrier.
		Data n []	Additional data from the n-th data carrier.
		Check Byte n	A check byte is transmitted in the last byte from the n-th data carrier, which indicates whether the data read is valid: 00 _{hex} : Data valid FF _{hex} : Data invalid
	Last byte	2nd Bit Header	If the 1st and 2nd bit headers match, the data is valid.

7

Specific commands for BIS VU read/write heads

Command Identifier 54_{hex}: Bulk Write

The *Bulk Write* command writes data to a data carrier population. Optionally to all of the data carriers that are found in the active read/write zone of the antenna or from a subset that was previously selected with the Select command.

Subaddress	Meaning	Description of Function
00 _{hex}	1st Bit Header	
01 _{hex}	Command Identifier	54 _{hex} : Bulk Write.
02 _{hex}	Start address (Low Byte)	Start address to be written from.
03 _{hex}	Start address (High Byte)	Start address to be written from.
04 _{hex}	Number of bytes (low byte)	Number of bytes to be written from the start address.
05 _{hex}	No. of bytes (High Byte)	Number of bytes to be written from the start address.
06 _{hex}	Data carrier selection	All = 0 / Selected = 1
07 _{hex}	Max. Tags	Maximum number of tags.
	None	No meaning
Last byte	2nd Bit Header	If the 1st and 2nd bit headers match, the data is valid.

Data is accepted from the processor unit only after the command has been accepted by the processor unit and acknowledged.

Subaddress	Meaning	Description of Function
00 _{hex}	1st Bit Header	
01 _{hex}	Data	Transmission of the data that is to be written from the data carriers.
	Data	Transmission of the data that is to be written from the data carriers.
	None	No meaning
Last byte	2nd Bit Header	If the 1st and 2nd bit headers match, the data is valid.

Numerical parameters, consisting of more than 8 bits (1 byte), are transmitted with the LSB first. Example: The 32-bit value 00000602_{hex} is transmitted as a byte sequence 02 06 00 00.

While the command is running (AA = 1, AE = 0, AF = 0), the current status is output in the input buffer.

Subaddress	Meaning	Description of Function
00 _{hex}	1st Bit Header	AA = 1, $AE = 0$, $AF = 0$: Command is running.
01 _{hex}	No. of tags	Number of detected tags
02 _{hex}	Number of the Tag being Processed	0255
	None	No meaning
Last byte	2nd Bit Header	If the 1st and 2nd bit headers match, the data is valid.

7

Specific commands for BIS VU read/write heads

Upon successful execution (AE = 1, AF = 0), the number of written data carriers is transmitted into the input buffer in the following format:

Subaddress	Meaning	Description of Function
00 _{hex}	1st Bit Header	AE = 1, $AF = 0$: Command finished.
01 _{hex}	No. of tags	Number of detected tags.
02 _{hex}	Number of Successfully Written Data Carriers	0255
	None	No meaning
Last byte	2nd Bit Header	If the 1st and 2nd bit headers match, the data is valid.

Numerical parameters, consisting of more than 8 bits (1 byte), are transmitted with the LSB first. Example: The 32-bit value 00000602_{hex} is transmitted as a byte sequence 02 06 00 00.

or

Subaddress	Meaning	Description of Function
00 _{hex}	1st Bit Header	AF = 1: Status message
01 _{hex}	Status code	Provides information on the status of a query.
	None	No meaning
Last byte	2nd Bit Header	If the 1st and 2nd bit headers match, the data is valid.

7

Specific commands for BIS VU read/write heads

Command Identifier 55_{hex}: Return Number of Tags

This command returns the number of data carriers that were found in the active read/write zone of the antenna. Optionally, the total number of data carriers or the number of data carriers selected with the Select command.

Subaddress	Meaning	Description of Function
00 _{hex}	1st Bit Header	
01 _{hex}	Command Identifier	55 _{hex} : Return Number of Tags.
02 _{hex}	Data carrier selection	AII = 0 / Selected = 1
	None	No meaning
Last byte	2nd Bit Header	If the 1st and 2nd bit headers match, the data is valid.

If execution is successful, the response is passed to the input buffer in the following format:

Subaddress	Meaning	Description of Function
00 _{hex}	1st Bit Header	
01 _{hex}	Number of data carriers read	0255
	None	No meaning
Last byte	2nd Bit Header	If the 1st and 2nd bit headers match, the data is valid.

If no tag is identified, this command returns the number "0" and no error message.

or

Subaddress	Meaning	Description of Function
00 _{hex}	1st Bit Header	
01 _{hex}	Status code	Provides information on the status of a query.
	None	No meaning
Last byte	2nd Bit Header	If the 1st and 2nd bit headers match, the data is valid.

7

Specific commands for BIS VU read/write heads

Command Identifier 56_{hex}: Get RSSI (Receive Signal Strength Indicator)

This command returns the RSSI of a data carrier previously selected with the Select command. The RSSI is a value which is proportional to the signal strength of the received response signal from the data carrier.

Subaddress	Meaning	Description of Function
00 _{hex}	1st Bit Header	
01 _{hex}	Command Identifier	56 _{hex} : Get RSSI
02 _{hex}	RSSI Type	0: Real-time RSSI 1: Pilot Tone RSSI 2: Data RSSI
	None	No meaning
Last byte	2nd Bit Header	If the 1st and 2nd bit headers match, the data is valid.

The RSSI value is returned in the form of an I component and a Q-component as a power level measured in dBm.

Subaddress	Meaning	Description of Function
00 _{hex}	1st Bit Header	
01 _{hex}	I-value	
02 _{hex}	Q-value	
	None	No meaning
Last byte	2nd Bit Header	If the 1st and 2nd bit headers match, the data is valid.

or

Subaddress	Meaning	Description of Function
00 _{hex}	1st Bit Header	
01 _{hex}	Status code	Provides information on the status of a query.
	None	No meaning
Last byte	2nd Bit Header	If the 1st and 2nd bit headers match, the data is valid.

7

Specific
commands for
BIS VU read/write
heads

57_{hex}: Lock

The Lock command can block read or write access, as well as access of any kind, to memory areas (RES, EPC, TID, USER) of a UHF data carrier. Depending on the level of security, the memory areas can be password protected or completely blocked. The Mask and Action fields specify which memory areas receive a new Lock Status and how these should appear. Using Bit Masks allows the Lock Status of multiple memory areas to be changed at the same time.

;	No
1	In

ote In order to successfully execute the Lock command, it is necessary to first provide the correct Access Password for the data carrier via a Write Parameter command. Passwords (Access and Kill) are stored in the Reserved memory area.

Mask: Bit Mask (16-Bit), used to determine which memory area of the selected data carrier should be processed with respect to its Lock Status. 0: Memory area is not affected by the Action field 1: Memory area is affected by the Action field

Bit Mask (16-Bit), used to determine how the Lock Status of the respective Action: memory areas should be changed. The Lock Status can be set for individual memory areas by setting or resetting the Lock and Permalock bits.

Bit No.	7	6	5	4	3	2	1	0
Memory area	Access PW	Access PW	EPC	EPC	TID	TID	USER	USER
Mask[0]	Mask	Mask	Mask	Mask	Mask	Mask	Mask	Mask
Action[0]	Lock	Perma- lock	Lock	Perma- lock	Lock	Perma- lock	Lock	Perma- lock

Bit No.	15	14	13	12	11	10	9	8
Memory area	Not used						Kill PW	Kill PW
Mask[1]							Mask	Mask
Action[1]							Lock	Perma- lock

Lock Status of the EPC, TID and USER memory areas:

Lock	Permalock	Lock Status	
0	0	Read and Write:	No Password
0	1	Read and Write:	No Password
		(State can no longer be chai	nged)
1	0	Read: Write:	No Password Access Password
1	1	Read: Write:	No Password Access Password
		(State can no longer be chai	nged)

7

Specific commands for BIS VU read/write heads

÷	
1	-

Note The *TID* memory area is inherently read-only regardless of the Lock Status and can only be read.

Lock Status of the Reserved memory area (Access Password and Kill Password)

Lock	Permalock	Lock Status	
0	0	Read and Write:	No Password
0	1	Read and Write:	No Password
		(State can no longer be char	nged)
1	0	Read and Write:	Access Password
1	1	Read and Write:	Not Possible
		(State can no longer be char	nged)

Subaddress	Meaning	Description of Function
00 _{hex}	1st Bit Header	
01 _{hex}	Command Identifier	57 _{hex} : Lock.
02 _{hex}	Mask[0]	
03 _{hex}	Mask[1]	
04 _{hex}	Action[0]	
05 _{hex}	Action[1]	
	None	No meaning
Last byte	2nd Bit Header	If the 1st and 2nd bit headers match, the data is valid.

Subaddress	Meaning	Description of Function
00 _{hex}	1st Bit Header	
01 _{hex}	Status code	Provides information on the status of a query.
	None	No meaning
Last byte	2nd Bit Header	If the 1st and 2nd bit headers match, the data is valid.

BIS M-41_ compatibility mode

Command Identifier 58_{hex}: Activate Custom Parameters

Places the BIS V processor unit into the BIS M-41_ compatibility mode for use of custom read/write commands in connection with BIS M - 1_ _ - 07 type data carriers.

Subaddress	Meaning	Description of Function
00 _{hex}	1st Bit Header	
01 _{hex}	Command Identifier	58 _{hex} : Set Custom Parameters
02 _{hex}	Custom Parameter	Read/Write with Custom Option 0: deactivated 1: activated
	None	No meaning
Last byte	2nd Bit Header	If the 1st and 2nd bit headers match, the data is valid.

or

Input Buffer: Status Message

Subaddress	Meaning	Description of Function
00 _{hex}	1st Bit Header	
01 _{hex}	Status code	Provides information on the status of a query.
	None	No meaning
Last byte	2nd Bit Header	If the 1st and 2nd bit headers match, the data is valid.

Communication

Communication between the controlling system and processor unit is defined by a trace. Communication between the host control system and the processor unit is implemented using a control bit in the output and input buffers.

Basic sequence

- 1. The controller sends a command identifier to the processor unit in the output buffer with the AV bit set.
- The AV bit tells the processor unit that a job is starting and that the transmitted data is valid. 2. The processor unit accepts the job and confirms the job by setting the AA bit in the input
- The processor unit accepts the job and confirms the job by setting the AA bit in the input buffer.
- 3. If additional data needs to be exchanged for the job, readiness for additional data exchange is indicated by inverting the TI and TO toggle bits.
- 4. The processor unit has correctly executed the job and sets the AE bit into the input buffer.
- 5. The controller has accepted all of the data. The AV bit in the output buffer is reset.
- 6. The processor unit resets all of the control bits set in the input buffer during the job (AA bit, AE bit). The processor unit is ready for the next job.

Read/write times

All specifications are typical values. Deviations are possible depending on the application and combination of R/W head and data carrier. The specifications apply to static operation; no CRC_16 data checking. All specified read/write times are based on the communication between the data carrier and the read/write head. The times for the data communication between the processor unit and the host control system are not included.

7

For read/write heads BIS VM

Mifare:

Read times Data carrier with 16 bytes per block		
Data carrier detection	~ 20 ms	
Read bytes 0 to 15	~ 25 ms	
For each additional 16-byte block started	~ 10 ms	

Write times Data carrier with 16 bytes per block		
Data carrier detection	~ 20 ms	
Write bytes 0 to 15	~ 60 ms	
For each additional 16-byte block started	~ 30 ms	

ISO 15693:

Read times Data carrier with 16 bytes per block		
Data carrier detection	~ 20 ms	
Read bytes 0 to 15	~ 25 ms	
For each additional 16-byte block started	~ 10 ms	

Write times Data carrier with 16 bytes per block		
	FRAM	EEPROM
	(BIS M-102/20)	(BIS M-103/07/08)
Data carrier detection	~ 20 ms	~ 20 ms
Write bytes 0 to 15	~ 60 ms	~ 80 ms
For each additional 16-byte block started	~ 25 ms	~ 80 ms

High speed*:

Read times Data carrier with 64 bytes per block		
Data carrier detection	~ 20 ms	
Read bytes 0 to 63	~ 14 ms	
For each additional 64-byte block started	~ 6 ms	

Write times Data carrier with 64 bytes per block		
Data carrier detection	~ 20 ms	
Write bytes 0 to 15	~ 30 ms	
For each additional 64-byte block started	~ 15 ms	

*These times apply only for the combination of BIS VM-3__-401-S4 read/write head with BIS M-1__-11/A, BIS M-1__-13/A, BIS M-1__-14/A, or BIS M-1__-15/A data carriers.

7

For read/write heads BIS VL

Read times:

Data carrier with 16 bytes per block	BIS L-1
Data carrier detection	~ 110 ms
Read bytes 0 to 15	~ 175 ms
For each additional 16-byte block started	~ 40 ms

Data carrier BIS L-2__

Data carrier detection + Read data carrier \leq 140 ms

Write times:

Data carrier with 16 bytes per block	BIS L-1
Data carrier detection	~ 110 ms
Write bytes 0 to 15	~ 285 ms
For each additional 16-byte block started	~ 100 ms

Data carrier BIS L-2__

Writing not possible

For read/write heads BIS C

Read times in static mode

Data carrier with 32 bytes per block		
No. of bytes	Read time [ms]	
0 to 31	110	
For each additional 32-byte block started	120	

Data carrier with 64 bytes per block					
No. of bytes Read time [ms]					
0 to 63	220				
For each additional 64-byte block started	230				

Write times in static mode

Data carrier with 32 bytes per block					
No. of bytes Read time [ms]					
0 to 31	110 + n * 10				
≥ 32 bytes	y * 120 + n * 10				

Data carrier with 64 bytes per block					
No. of bytes Read time [ms]					
0 to 63	220 + n * 10				
≥ 64 bytes	Y * 230 + n * 10				

n = Number of contiguous bytes to write

y = Number of blocks to be processed

For read/write heads BIS C

Example: 17 bytes should be written starting at address 187. Data carrier = 32 bytes per block. Blocks 5 and 6 are processed, since the start address 187 is in block 5 and end address 203 is in block 6. t = $2 \times 120 + 17 \times 10 = 410$

Read times within the first block in dynamic mode

Data carrier with 32 bytes per block					
No. of bytes Read time [ms]					
0 to 3	14				
For each additional byte	3,5				
0 to 31	112				

Data carrier with 64 bytes per block					
No. of bytes Read time [ms]					
0 to 3	14				
For each additional byte	3,5				
0 to 63	224				

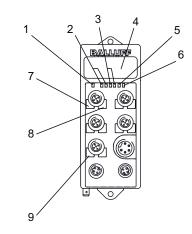
m = Highest address to read Formula: t = (m + 1) * 3.5 ms

Example: Read 11 bytes starting at address 9. This means that the largest address to be read is 19. This yields 70 ms.

Dynamic operation with BIS C: The times indicated apply after the data carrier has been detected. Otherwise 45 ms must be added for powering up until the data carrier is recognized. To achieve the read times specified in dynamic operation, the Tag Type parameter has to be set to "BIS C 32 Byte" or "BIS C 64 Byte" on the respective head.

BIS V-6106 Ethernet/IP™ Processor Unit

7 Device Functions


7.3 Function Indicator The operating states of the identification system, the Ethernet/IP interface and the IO-Link master are displayed using LEDs.

Overview of display elements

Figure 6: Function Indicators

- 1 Ready device (RD)
- 2 Module status (MS)
- 3 Network status (NS)
- 4 Display
- 5 Link/Activity EIP 2 (L/A)

- 6 Link/Activity EIP 1 (L/A)
- 7 RD R/W head
- 8 COM R/W head
- 9 Service/IO-Link

Device LEDs

LED	Color	Status	Meaning							
RD	Green	Off	Device is not ready for operation							
		On	Device is ready for operation							
L/A	Green	Off	No link							
		Static on	Link detected, no data transmission							
		Flicker	Data transmission							
MS	Red/green	Off	Device not turned on							
	Green	Static on	Device is ready for operation							
		Flashes	Stand-by: Device not configured							
	Red	Static on	Severe, fatal error							
		Flashes	Simple, non-fatal error (e.g. an incorrect configuration)							
	Red/green	Flashes	Self test: Device is undergoing a self test after being switched on							
NS	Red/green	Off	Device not turned on or there is no IP address							
	Green	Static on	Connected: Device has an existing connection to the master							
		Flashes	No connection: Device has no existing connection, IP address is not available							
	Red	Static on	Doubled IP address: Device identified that its IP address is already being used.							
		Flashes	Connection timeout							
	Red/green	Flashes	Self test: Device is undergoing a self test after being switched on							

7

R/W head LEDs

	Function					
Indicator	RD R/W head (Green)	COM R/W head (Yellow)				
Off	Not ready	No data carrier detected				
LED lights up	Ready for Operation	Data carrier detected (CP)				
LED flashes	Cable break or R/W head not connected	Data carrier is being processed				

IO-Link port LED

The IO port is assigned an LED for displaying the operational status.

Indicator	Function					
mulcator	IO-Link	Input				
Off	Ethernet/IP not yet started	Signal = 0				
Yellow	-	Signal = 1				
Red	Error	SC*				
Green	IO-Link communication active	-				
Flashing green	IO-Link node missing or cable break	-				

 * Short-circuit at PIN 1. In this case, the LED lights up in red.

7.4 Examples

1. Reading 30 bytes at R/W head 1, start address 10

Once enough data has been read during the execution of the read job to fill the input buffer for R/W Head 1, the data will be transmitted to the input buffer. The AE bit is not set until the processor unit has finished the "Read" operation.

The "Job End" (AE bit) response is reliably set no later than before the last data has been sent. This timing depends on the requested volume of data and the time response of the controller. In the example, the use of italics for "Set AE Bit" calls your attention to this fact.

Control

Identification System

1. Process output buffer (note sequence):			2. Process Input Buffer (note sequence):		
01 _{hex}	Command designator 01 _{hex}		00 _h	_{ex} /0F _{hex}	Set AA bit
02 _{hex}	Start address 0A _{hex}]	01.	0E _{hex}	Enter first 14 bytes
03 _{hex}	Start address 00 _{hex}		00 _h	_{ex} /0F _{hex}	Invert TO bit
04 _{hex}	No. of bytes 1E _{hex}]	00 _h	_{ex} /0F _{hex}	Set AE bit
05 _{hex}	No. of bytes 00 _{hex}				
00 _{hex} /0F _{hex}	Set AV Bit				
3. Proces	s input buffer:		4.	Process ii	nput buffer:
010E _{hex}	Copy first 14 bytes		01	0E _{hex}	Enter second 14 bytes
	s output buffer:]		,/OF _{hex}	Invert TO bit
00 _{hex} /0F _{hex}	Invert TI bit]		_{ex} /0F _{hex}	Set AE bit
5. Proces	s input buffer:		6.	Process ir	nput buffer:
010E _{hex}	Copy second 14 bytes			02 _{hex}	Enter last bytes
Proces	s output buffer:		00 _h	_{ex} /0F _{hex}	Invert TO bit
00 _{hex} /0F _{hex}	Invert TI bit]	00 _h	_{ex} /0F _{hex}	Set AE bit
					nput buffer:
0102 _{hex}	Copy last bytes]	00 _h	_{ex} /0F _{hex}	Reset AA and AE bits
	s output buffer:	1			
$00_{hex}/0F_{hex}$	Reset AV bit				

Examples

7

2. Reading 30 bytes at R/W head 1, start address 10, problem during reading

Note If a problem occurs, the AF bit is set with the corresponding status number instead of

Control

Identification System

- Process output buffer 1. (note sequence):
- 2. Process Input Buffer (note sequence): If problem occurs immediately!

01 _{hex}	Command designator 01 _{hex}	mmmm	00 _{hex} /0F _{hex}	Set AA bit
02 _{hex}	Start address 0A _{hex}		01 _{hex}	Enter status number
03 _{hex}	Start address 00 _{hex}		00 _{hex} /0F _{hex}	Set AF bit
04 _{hex}	No. of bytes 1E _{hex}			
05 _{hex}	No. of bytes 00 _{hex}			
00 _{hex} /0F _{hex}	Set AV Bit			
3. Process i	nput buffer:		4. Process ir	nput buffer:
01 _{hex}	Copy status number		00 _{hex} /0F _{hex}	Reset AA and AF bits
Process of	output buffer:			
00 _{hex} /0F _{hex}	Reset AV bit			

Examples

3. Reading 30 bytes at R/W head 1, start address 10, problem during reading

i Note

If a problem occurs after transmission of the data has started, the AF bit is provided instead of the AE bit together with a corresponding status number. The AF status message is dominant. Which data is incorrect cannot be specified. Setting the AF bit cancels the job and declares it as finished.

Control

Identification System

Process output buffer 2. Process Input Buffer 1. (note sequence): (note sequence): 01_{hex} Command designator 01_{hex} 00_{hex}/0F_{hex} Set AA bit Start address 0A_{hex} 01...0E_{hex} 02_{hex} Enter first 14 bytes Start address 00_{hex} 00_{hex}/0F_{hex} 03_{hex} Invert TO bit No. of bytes 1E_{hex} 04_{hex} No. of bytes 00_{hex} 05_{hex} 00_{hex}/0F_{hex} Set AV Bit З. Process input buffer: Process input buffer: 4. If a problem has occurred! 01...0E_{hex} Copy first 14 bytes 01_{hex} Enter status number 00_{hex}/0F_{hex} Set AF bit Process output buffer: 00_{hex}/0F_{hex} Invert TI bit Process input buffer: 6. Process input buffer: 5. 01...0E_{hex} Reset AA and AF bits Copy status number 00_{hex}/0F_{hex} Process output buffer: 00_{hex}/0F_{hex} Reset AV bit

Examples

7

4. Writing 30 bytes at R/W head 1, start address 20

Control

Identification System

1. Process output buffer (note sequence):			2.	Process I (note seq	nput Buffer uence):
01 _{hex}	Command designator 02 _{hex}			_{ex} /0F _{hex}	Set AA bit, invert TO bit
02 _{hex}	Start address 14 _{hex}				
03 _{hex}	Start address 00 _{hex}				
04 _{hex}	No. of bytes 1E _{hex}				
05 _{hex}	No. of bytes 00 _{hex}				
00 _{hex} /0F _{hex}	Set AV Bit				
3. Process	output buffer:		4.	Process	output buffer:
010E _{hex}	Enter first 14 bytes				Copy first 14 bytes
00 _{hex} /0F _{hex}	Invert TI bit		01.	0E _{hex}	nput buffer:
00hex/01 hex			00	ex/0F _{hex}	Invert TO bit
5. Process	output buffer:		6.	Process	putput buffer:
010E _{hex}	Enter second 14 bytes		01.	0E _{hex}	Copy second 14 bytes
00 _{hex} /0F _{hex}	Invert TI bit				nput buffer:
			00 _h	_{ex} /0F _{hex}	Invert TO bit
7 6		2 Million Manual M Manual Manual Ma	0	5	
	output buffer:				output buffer:
0102 _{hex}	Enter last 2 bytes	-	01.	02 _{hex}	Copy last 2 bytes
00 _{hex} /0F _{hex}	Invert TI bit		00		nput buffer:
9. Process	output buffer:		10.	ex/0F _{hex}	Set AE bit
9. FICCESS $00_{hex}/0F_{hex}$	00 _{hev} /0F _{hev} Reset AV bit			/0F _{hex}	Reset AA and AE bits
bohex' or hex		J	Looh	ex' Or hex	

Examples

7

5. Copying data from one data carrier to another

The data from one data carrier at a read/write head (source) is copied to a data carrier in front of another read/write head (target). The data carriers have to be in front of the read/write heads (even if dynamic mode has been configured) and must have the specified address range. The command is processed in the buffer of the source head.

In the example, 17 bytes starting from address 10 of the data carrier are to be copied to the data carrier in front of read/write head 3 starting from address 35.

Control

Identification System

1. Process (note sec	output buffer quence):		2.	Process lı (note seqi	nput Buffer uence):
01 _{hex}	Command designator 11 _{hex}	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		x/0F _{hex}	Set AA bit, Set AE bit
02 _{hex}	Source start address 0A _{hex}				
03 _{hex}	Source start address 00 _{hex}				
04 _{hex}	Target start address 23 _{hex}				
05 _{hex}	Target start address 00 _{hex}				
06 _{hex}	No. of bytes 11 _{hex}				
07 _{hex}	No. of bytes 00 _{hex}				
08 _{hex}	Target head number 03 _{hex}				
00 _{hex} /0F _{hex}	Set AV Bit				
3. Process	output buffer:		4.	Process ir	nput buffer:
00 _{hex} /0F _{hex}	Reset AV bit	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		x/0F _{hex}	Reset AA and AE bits

Examples

7

6. Writing to a data carrier with a constant value

A data carrier is to be written with 1000 bytes (constant value) starting from start address 80.

Control

Identification System

	rocess o lote seq	output buffer uence):	- 1111111111	2.	Process I (note seq	nput Buffer uence):
01 _{hex}		Command designator 32_{hex}		00 _{he}	x/0F _{hex}	Set AA bit, invert TO bit
02 _{hex}		Start address 50 _{hex}				
03 _{hex}		Start address 00 _{hex}				
04 _{hex}		Number of bytes E8 _{hex}				
05 _{hex}		No. of bytes 03 _{hex}				
00 _{hex} /0	F _{hex}	Set AV Bit				
	rocess (<u></u>	Process of	output buffer:
01		Enter constant value]	01		Copy constant value
00 _{hex} /0	F _{hex}	Invert TI bit			Process i	nput buffer:
				00 _{he}	x/0F _{hex}	Set AE bit
5. P	rocess (output buffer:	ANNAN MANANA ANA ANA ANA ANA ANA ANA ANA	6.	Process i	nput buffer:
00 _{hex} /0	F _{hex}	Reset AV bit			_x /0F _{hex}	Reset AA and AE bits

Examples

7. Initializing a data carrier for CRC

The sequence for CRC initialization is similar to a write command. The start address and the number of bytes must correspond to the maximum amount of data used. In the example the complete memory area of a data carrier (752 bytes) is used. 658 bytes on the data carrier are available as data bytes, since 94 bytes are required for the CRC.

Control **Identification System** Process output buffer 2. 1. Process Input Buffer (note sequence): (note sequence): 01_{hex} Command designator 12_{hex} Set AA bit, invert TO bit 00_{hex}/0F_{hex} Start address 00_{hex} 02_{hex} 03_{hex} Start address 00_{hex} No. of bytes 92_{hex} 04_{hex} 05_{hex} No. of bytes 02_{hex} 00_{hex}/0F_{hex} Set AV Bit З. Process output buffer: 4. Process output buffer: Enter first 14 bytes 01...0E_{hex} 01...0E_{hex} Copy first 14 bytes 00_{hex}/0F_{hex} Invert TI bit Process input buffer: 00_{hex}/0F_{hex} Invert TO bit 5. Process output buffer: 6. Process output buffer: 01...0E_{hex} 01...0E_{hex} Enter second 14 bytes Copy second 14 bytes 00_{hex}/0F_{hex} Invert TI bit Process input buffer: 00_{hex}/0F_{hex} Invert TO bit 95. Process output buffer: 96. Process output buffer: 01...08_{hex} Enter last bytes Copy last bytes 01...08_{hex} Invert TI bit Process input buffer: 00_{hex}/0F_{hex} 00_{hex}/0F_{hex} Set AE bit 97. Process output buffer: 98. Process input buffer: $00_{\text{hex}}/0F_{\text{hex}}$ Reset AV bit $00_{\text{hex}}/0F_{\text{hex}}$ Reset AA and AE bits

Examples

8. Creating a basic state for a R/W head or switching off a R/W head

The read/write heads for the identification system can be put into a basic state independently of each other and the respective read/write head can be shut off.

Control

Identification System

1. Process output buffer:	2. Go to the default state. Process input buffer:
00 _{hex} /0F _{hex} Set GR bit	00 _{hex} /0F _{hex} Reset BB bit
	\Rightarrow R/W head is shut off 4. Process input buffer:
3. Process output buffer:	4. Process input buffer:
00 _{hex} /0F _{hex} Reset GR bit	00 _{hex} /0F _{hex} Set BB bit

 \Rightarrow R/W head is switched on

9. Switching off a read/write head antenna

During normal operation, all read/write head antennas are switched on. The antenna of a respective R/W head can be switched off by setting the KA bit.

Control

1. Process output buffer:

00 _{hex} /0F _{hex} Set KA bit

The R/W head's antenna is switched back on by resetting the KA bit.

Device Functions

Examples	10 Reading the EPCs of multiple data carriers in front of the antenna (only BIS VU)					
For configuration with 16-byte	With a maximu	Im number of 5, EPC size of 1	2 bytes configured, 3 data carriers identified			
buffer size!	Control			Identification System		
	1. Process output buffer (note sequence):			2. Process Input Buffer (note sequence):		
	01 _{hex}	Command designator 47 _{hex}		00 _{hex} /0F _{hex}	Set AA bit	
	02 _{hex}	Type EPC 00 _{hex}		01 _{hex}	Number of data carriers 03 _{hex}	
	03 _{hex}	Max. number 05 _{hex}		02 _{hex}	Number of bytes per EPC 0C _{hex}	
	00 _{hex} /0F _{hex}	Set AV Bit		03 _{hex} 0E _{hex}	First EPC 12 bytes	
				00 _{hex} /0F _{hex}	Set AE bit	
	3a. Process	input buffer:	MINIMUM	4. Process i	nput buffer:	
	01 _{hex}	Note number of data carriers	-iuuuuu	010C _{hex}	Enter second EPC 12 bytes	
	02 _{hex}	Save number of bytes		0D _{hex} /0E _{hex}	Enter third EPC 2 bytes	
	03 _{hex} /0E _{hex}	Copy first EPC 12 bytes		00 _{hex} /0F _{hex}	Invert TO bit	
	3b. Process	output buffer:				
	00 _{hex} /0F _{hex}	Invert TI bit				
	5a. Process	input buffer:		6. Process i	nput buffer:	
	01 _{hex} 0C _{hex}	Copy second EPC 12 bytes		01 _{hex} 0A _{hex}	Enter third EPC 10 bytes	
	0D _{hex} /0E _{hex}	Copy third EPC 2 bytes		00 _{hex} /0F _{hex}	Invert TO bit	
	5b. Process	output buffer:				
	00 _{hex} /0F _{hex}	Invert TI bit				
	7a. Process	input buffer:		8. Process i	nput buffer:	
	01 _{hex} /0A _{hex}	Copy third EPC 10 bytes	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	00 _{hex} /0F _{hex}	Reset AA and AE bits	
	7b. Process	output buffer:		·		
	00 _{hex} /0F _{hex}	Reset AV bit]			

Examples	11. Selecting a data carrier for further processing (only BIS VU)				
For configuration with 16-byte	For configurati	on with EPC size of 12 bytes			
buffer size!	Control			Identification	System
	1. Process output buffer (note sequence):			2. Process (note sec	Input Buffer quence):
	01 _{hex}	Command designator 40 _{hex}		00 _{hex} /0F _{hex}	Set AA bit, Invert TO bit
	02 _{hex}	Type EPC 00 _{hex}	1		· · · · · · · · · · · · · · · · · · ·
	03 _{hex}	Length of the EPC 0C _{hex}			
	04 _{hex}	Reserved 00 _{hex}			
	05 _{hex}	Reserved 00 _{hex}			
	06 _{hex}	Reserved 00 _{hex}			
	00 _{hex} /0F _{hex}	Set AV Bit			
		1		M	output buffer:
	01 _{hex} 0C _{hex}		_	$01_{hex}0C_{hex}$	Save EPC
	00 _{hex} /0F _{hex}	Invert TI bit			s input buffer:
				00 _{hex} /0F _{hex}	Set AE bit
			HIMMMAN.		
	5. Process	output buffer:	A NIN NAME AND A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRI	6. Process	input buffer:
	00 _{hex} /0F _{hex}	Reset AV bit		00 _{hex} /0F _{hex}	Reset AA and AE bits

Examples

7

12. Bulk Write (only BIS VU)

Write to all data carriers that are located in front of the antenna. Write 16 bytes starting at data carrier address 3.

Control

Identification System

	rocess o note seq	output buffer uence):		2.	Process I (note seq	nput Buffer uence):
01 _{hex}		Command designator 54 _{hex}		00 _h	_{ex} /0F _{hex}	Set AA bit, invert TO bit
02 _{hex}		Start address 03 _{hex}				·
03 _{hex}		Start address 00 _{hex}				
04 _{hex}		No. of bytes 10 _{hex}				
05 _{hex}		No. of bytes 00 _{hex}				
06 _{hex}		Subset Type 00 _{hex}				
07 _{hex}		Max Tags FF _{hex}				
00 _{hex} /	0F _{hex}	Set AV Bit				
3. P	rocess	butput buffer:		4a.	Process	butput buffer:
010		Enter first 14 bytes		N	0E _{hex}	Copy first 14 bytes
00 _{hex} /		Invert TI bit		4b.		nput buffer:
00hex/	or hex	Invert IT bit]			Invert TO bit
5. P	rocess o	output buffer:	2 Million Manual M Manual Manual Manu	6a.		butput buffer:
010	-	Enter the last 2 bytes		01.	02 _{hex}	Copy last 2 bytes
00 _{hex} /	0F _{hex}	Invert TI bit		6b.	Process i	nput buffer:
				01 _h	ЭХ	Enter the number of tags found
				02 _h	ЭX	Enter the number of successfully written tags
				00 _h	_{ex} /0F _{hex}	Set AE bit
7 ח	r00000 **	pout buffor:		8.	Process i	nput buffer:
	IUCESS I					,
01 _{hex}		Copy the number of tags found		00	_{ex} /0F _{hex}	Reset AA and AE bits
02 _{hex}		Copy the number of successfully written tags				
Р	rocess o	output buffer:	-			
00 _{hex} /	0F _{hex}	Reset AV bit]			
			-			

Examples

7

13. Bulk Read (only BIS VU)

Read from all data carriers that are located in front of the antenna. Read 4 bytes starting at data carrier address 3.

Control

Identification System

- 1. Process output buffer (note sequence):
- 2. Process Input Buffer (note sequence):

uence).
Command designator 53 _{hex}
Start address 03 _{hex}
Start address 00 _{hex}
No. of bytes 04 _{hex}
No. of bytes 00 _{hex}
Subset Type 00 _{hex}
Max Tags FF _{hex}
Set AV Bit

 (1010	aeneen		
 00 _{hex} /0F _{hex}	Set AA bit		
01 _{hex}	Enter the number of tags		
02 _{hex}	Enter the number of bytes per tag		
03 _{hex} 0E _{hex}	Enter 12 bytes of data and the check byte		
00 _{hex} /0F _{hex}	Invert TO bit		
00 _{hex} /0F _{hex}	Set AE bit		

3a. Process input buffer:

 $00_{\rm hex}/0F_{\rm hex}$

01 _{hex}	Copy the number of tags			
02 _{hex}	Copy the number of bytes per tag			
03 _{hex} 06 _{hex}	Copy the 4th byte of data for the 1st tag			
07 _{hex}	Read the check byte			
08 _{hex} 0b _{hex}	Copy the 4th byte of data for the 2nd tag			
0C _{hex}	Read the check byte			
0D _{hex} /0E _{hex}	Copy the 2nd byte of data for the 3rd tag			
3b. Process output buffer:				

Invert TI bit

 4.	Process in	nput buffer:
 01	00	

	01 _{hex} 08 _{hex}	Enter I8 bytes of data and the check byte
	00 _{hex} /0F _{hex}	Invert TO bit
	00 _{hex} /0F _{hex}	Set AE bit
=		

		1111111111111
5a. Process i	nput buffer:	
01 _{hex} 02 _{hex}	Copy the 2nd byte of data for the 3rd tag	
03 _{hex}	Read the check byte]
04 _{hex} 07 _{hex}	Copy the 4th byte of data for the 4th tag	
08 _{hex}	Read the check byte]
5b. Process of	output buffer:	_
00 _{hex} /0F _{hex}	Reset AV bit	

6a. Process input buffer:

00_{hex}/0F_{hex} Reset AA and AE bits

7

Examples 14. Reading the read/write head parameters (only BIS VU)

Reading the parameter max EPC length (Parameter 0003_{hex}) from one BIS VU read/write head.

Control

Identification System

- 1. Process output buffer (note sequence):
- 2. Process Input Buffer (note sequence):

01 _{hex}	Command designator 49 _{hex}	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	00 _{hex} /0F _{hex}	Set AA bit
02 _{hex}	Parameter 03 _{hex}		01 _{hex}	Enter the number of parameters
03 _{hex}	Parameter 00 _{hex}		02 _{hex}	Enter parameter data
00 _{hex} /0F _{hex}	Set AV Bit	1	00 _{hex} /0F _{hex}	Set AE bit

		MMMMMM			
3a. Process i	nput buffer:		4.	Process	input buffer:
01 _{hex}				_{ex} /0F _{hex}	Reset AA and AE bits
02 _{hex}					
3b. Process output buffer:		_			
00 _{hex} /0F _{hex}	Reset AV bit				

15. Unselect (only BIS VU)

Undoing a data carrier selection that was made with the Select command.

Control			Identification	System
1. Process (note sec	output buffer juence):		(note seq	nput Buffer uence):
01 _{hex}	Command designator 41 _{hex}		00 _{hex} /0F _{hex}	Set AA bit
00 _{hex} /0F _{hex}	Set AV Bit]	00 _{hex} /0F _{hex}	Set AE bit
3. Process 00 _{hex} /0F _{hex}	output buffer: Reset AV bit		4. Process i 00 _{hex} /0F _{hex}	nput buffer: Reset AA and AE bits

Examples

7

16. Setting the read/write head parameters (only BIS VU)

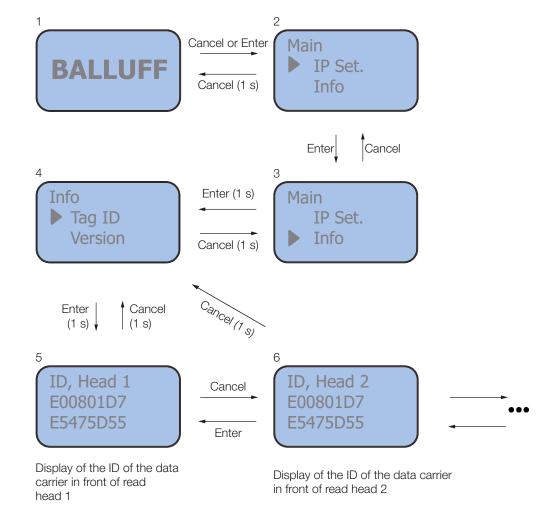
Setting an access password (Parameter $1002_{\rm hex}$) for accessing a password-protected data carrier.

Password: 12345678_{hex}

Control

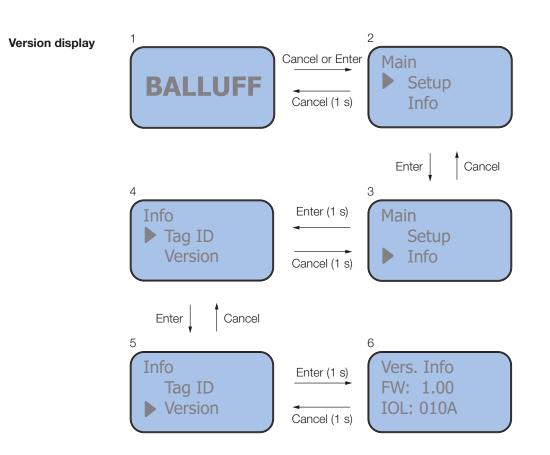
Identification System

1. Process output buffer (note sequence):			2.	Process I (note seq	nput Buffer uence):
01 _{hex}	Command designator 48 _{hex}			_{ex} /0F _{hex}	Set AA bit, Invert TO bit
02 _{hex}	Parameter 02 _{hex}				,
03 _{hex}	Parameter 10 _{hex}				
04 _{hex}	Parameter Length 04 _{hex}				
00 _{hex} /0F _{hex}	Set AV Bit				
3. Process of	output buffer:		4a.	Process of	output buffer:
01 _{hex}	Parameter Data 78 _{hex}			04 _{hex}	Copy parameter data
02 _{hex}	Parameter Data 56 _{hex}	1	4b.	Process i	nput buffer:
03 _{hex}	Parameter Data 34 _{box}		00 _h	_{ex} /0F _{hex}	Set AE bit
04 _{hex}	Parameter Data 12 _{hex}				
00 _{hex} /0F _{hex}	Invert TI bit				
5. Process of	putput buffer:		6a.	Process i	nput buffer:
00 _{hex} /0F _{hex} Reset AV bit				ex/OF _{hex}	Reset AA and AE bits

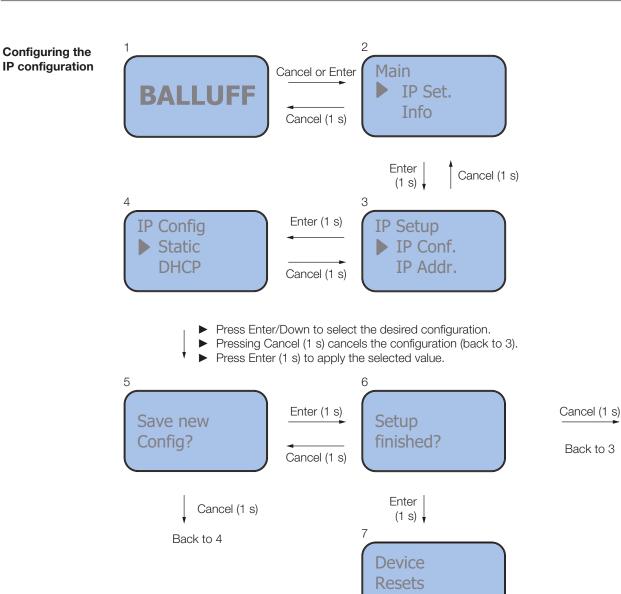

7 Device Functions

7.5 Display
 The display provides functions for starting up the BIS V. It can be used to set the IP and gateway address and the subnet mask. In addition, tag data and version information can be output for diagnostic purposes. It is controlled using a 2-button controller. You can navigate within a menu level by holding the Enter/Down and Cancel/Up buttons for a short time. You can switch between menu levels or confirm or cancel an action by pressing the

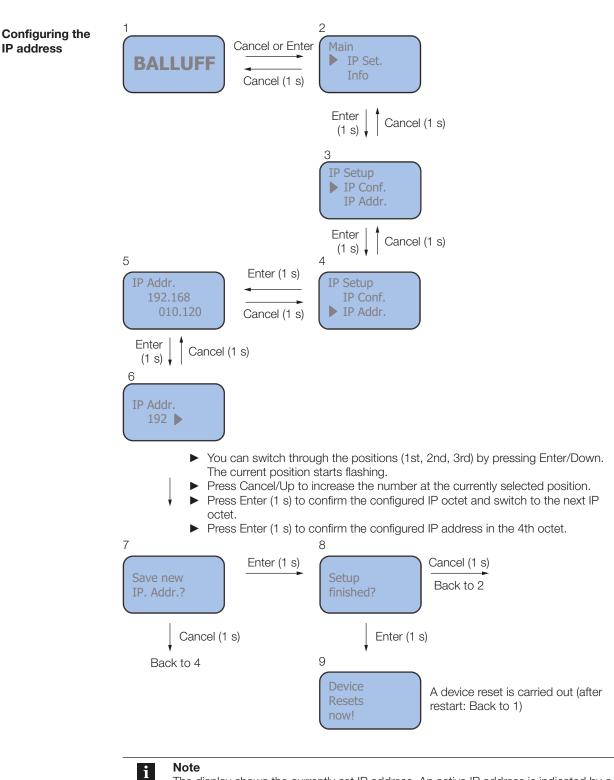
buttons longer.

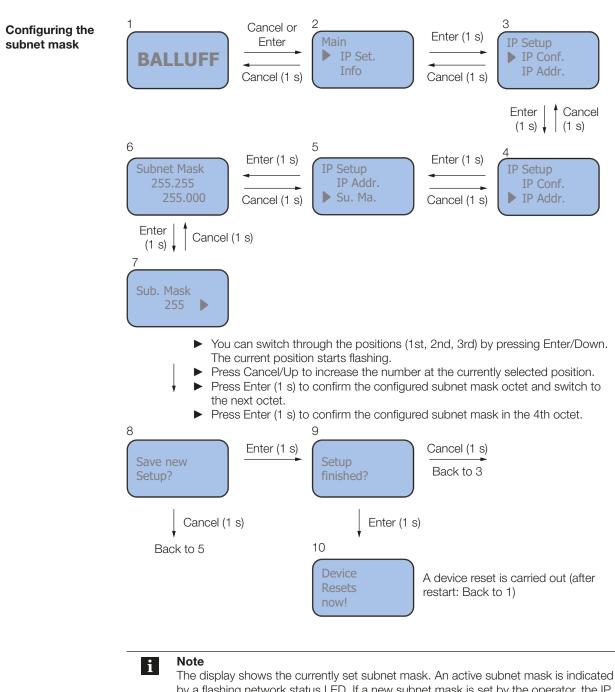

Displaying tag data

While selecting Head_IDs 1...4 (5, 6, etc.) (1 s) can be reversed back to 4 by using cancel.

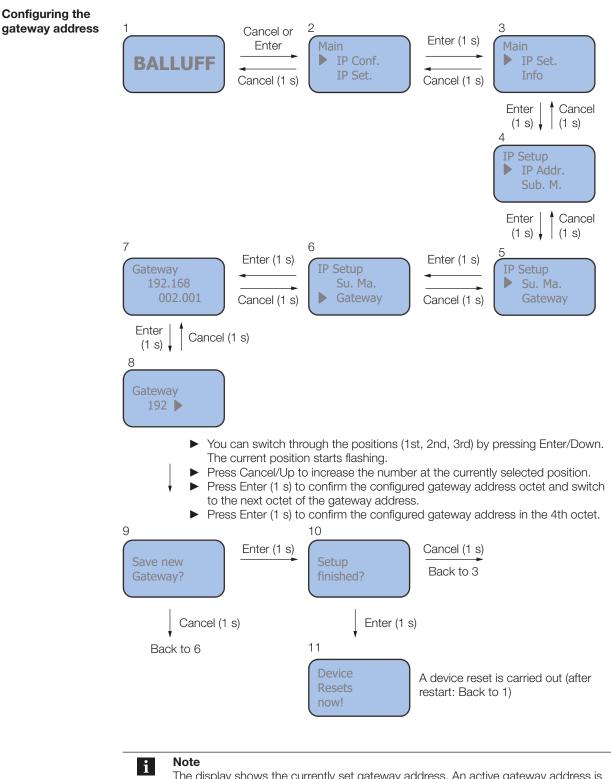

Device Functions

7


Two versions are displayed: the firmware version of the controller (here 1.00) and the version text of the IO-Link firmware (010A).


now!

Device Functions



The display shows the currently set IP address. An active IP address is indicated by a flashing network status LED. If a new IP address is set by the operator, the IP configuration will be set to a static address.

Device Functions

by a flashing network status LED. If a new subnet mask is set by the operator, the IP configuration will be set to a static address.

The display shows the currently set gateway address. An active gateway address is indicated by a flashing network status LED. If a new gateway address is set by the operator, the IP configuration will be set to a static address. The gateway address consists of the IP address and associated subnet mask. The operator can only change the octet at binary positions where a 0 was set in the subnet mask.

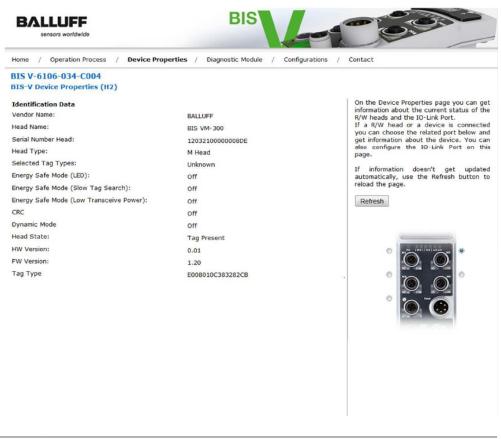
7 Device Functions

7.6 Webserver
 The BIS V Ethernet/IP device includes an integrated webserver for retrieving detailed information on the current status. Additionally, this can be used for the configuration of the IP settings and for setting parameters for IO-Link.
 For connection setup with the webserver, enter the IP address of the module in the address line of the browser. Please use Internet Explorer 7 or higher.

Home Information on the configuration and network activity of the module can be found on this page. The navigation bar appears in the upper area of the window, which allows you to switch between the various web pages. A click on the corresponding text is all it takes.

Operation Process

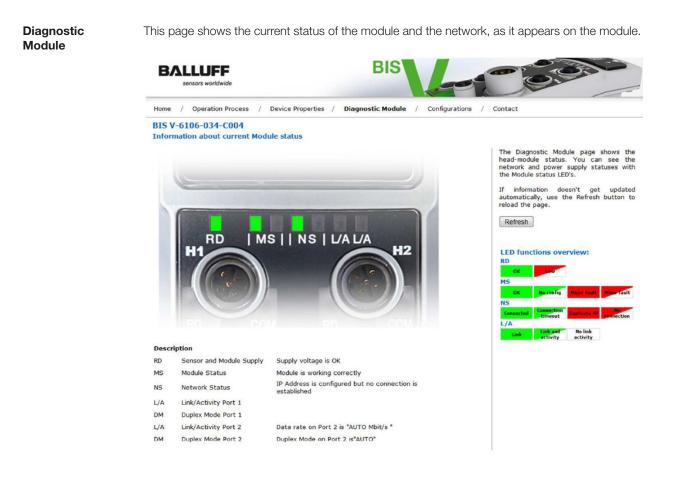
7


Information on the current process data and the port status of the device is visualized by LEDs on this page.

If an RFID R/W head or an IO-Link-device is connected to the respective ports, then additional information on the connected module will be displayed alongside the status information. Clicking on this text or the device port acts as a link that takes you to "Device Properties".

Device Properties

The parameter settings of the selected module (R/W heads, IO-Link) are shown on this page. Every module can be selected individually (right side). IO-Link modules can also be configured using this page.



Note

The connected IO-Link module can be configured in this window. A suitable controller with the corresponding software is needed to configure the Ethernet IP device and the R/W ports, however.

7

Copyright © 2013 Balluff GmbH

Configurations The module description and module position and the IP address can be edited on this page. The device settings can also be reset.

This function can only be used after entering a username and password:

Username: Balluff Password: BISVEIP

Home / Operation Proce	ss / De	evice Pr	operties	/ Di	/ Configurations / Contact	
BIS V-6106-034-C004	F.					
BIS-V Module Configura	tions					
General Information					On the Module Configurations page t	
Module Description:					the ability to configure the BIS-V mo Network settings such as user s	dule.
Module Location:					information texts can be set on this	bage.
Address Configuration						
Static IP						
IP Address:	192	. 168	. 1	. 3		
Subnet Mask:	255	. 255	. 255	. 0		
Gateway Address:	192	. 168	. 1	. 254		
Factory IP						
IP Address:	192.1	68.1.1				
Subnet Mask:	255.2	55.255.0	D			
Gateway Address:	192.1	68.1.1				
O DHCP Client						
Please confirm you want t	to reset the	e device				
1						
Apply Reset						

Note

Restarting the device is necessary to refresh the IP settings.

Device Functions

Contact

7

Contact information is shown on this page

Copyright © 2013 Balluff GmbH

Appendix

	<u>BIS V - 6 1 06 - 034 - C002</u>
Type Code	Balluff Identification System
	Series V (V = variable)
	System component 6 = Processor Unit
	Generation (design/material) 1 = Generation 1, 2011 housing design, metal
	Interface 02 = Profibus DP 06 = Ethernet/IP 08 = PROFINET 10 = EtherCAT 11 = CC-Link
	Software type 034 = Ethernet/IP
	Connection system C002 = Power supply:5-pin flanged male connector with 7/8" external thread IO-Link Master and USB: Flanged female connector M12 internal thread, 5-pin, A-coded Ethernet/IP 1: Flanged female connector M12 external thread, 4-pin, D-coded EtherNet/IP 2: Flanged female connector M12 internal thread, 4-pin, D-coded 4 heads VL/VM/VU and future systems: Flanged female connector M12 internal thread, 5-pin, A-coded C102 = Such as C002, also supports BIS C read/write heads with an adapter cable C_04 = Such as C_02, power supply: 4-pin flanged male connector with 7/8" external thread

Accessories (Optional, not included with delivery)

i Note

More accessories for the BIS V-6106-__ can be found in the Balluff BIS catalog and at www.balluff.com.

Appendix

ASCII Table

Decimal	Hex	Control Code	ASCII	Decimal	Hex	ASCII	Decimal	Hex	ASCII
0	00	Ctrl @	NUL	43	2B	+	86	56	V
1	01	Ctrl A	SOH	44	2C	,	87	57	W
2	02	Ctrl B	STX	45	2D	-	88	58	Х
3	03	Ctrl C	ETX	46	2E		89	59	Y
4	04	Ctrl D	EOT	47	2F	/	90	5 A	Z
5	05	Ctrl E	ENQ	48	30	0	91	5B	[
6	06	Ctrl F	ACK	49	31	1	92	5C	\
7	07	Ctrl G	BEL	50	32	2	93	5D	[
8	08	Ctrl H	BS	51	33	3	94	5E	Λ
9	09	Ctrl I	HT	52	34	4	95	5F	_
10	0 A	Ctrl J	LF	53	35	5	96	60	`
11	0B	Ctrl K	VT	54	36	6	97	61	а
12	0C	Ctrl L	FF	55	37	7	98	62	b
13	0D	Ctrl M	CR	56	38	8	99	63	С
14	0E	Ctrl N	SO	57	39	9	100	64	d
15	0F	Ctrl O	SI	58	3 A	:	101	65	е
16	10	Ctrl P	DLE	59	3B	;	102	66	f
17	11	Ctrl Q	DC1	60	3C	<	103	67	g
18	12	Ctrl R	DC2	61	3D	=	104	68	h
19	13	Ctrl S	DC3	62	ЗE	>	105	69	i
20	14	Ctrl T	DC4	63	ЗF	?	106	6 A	j
21	15	Ctrl U	NAK	64	40	@	107	6B	k
22	16	Ctrl V	SYN	65	41	A	108	6C	
23	17	Ctrl W	ETB	66	42	В	109	6D	m
24	18	Ctrl X	CAN	67	43	С	110	6E	n
25	19	Ctrl Y	EM	68	44	D	111	6F	0
26	1 A	Ctrl Z	SUB	69	45	E	112	70	p
27	1B	Ctrl [ESC	70	46	F	113	71	q
28	1C	Ctrl \	FS	71	47	G	114	72	r
29	1D	Ctrl]	GS	72	48	Н	115	73	S
30	1E	Ctrl ^	RS	73	49		116	74	t
31	1F	Ctrl _	US	74	4 A	J	117	75	u
32	20		SP	75	4B	K	118	76	V
33	21		!	76	4C	L	119	77	W
34	22		"	77	4D	М	120	78	х
35	23		#	78	4E	Ν	121	79	У
36	24		\$	79	4F	0	122	7 A	Z
37	25		%	80	50	Р	123	7B	{
38	26		&	81	51	Q	124	7C	
39	27		f	82	52	R	125	7D	}
40	28		(83	53	S	126	7E	~
41	29)	84	54	Т	127	7F	DEL
42	2 A		*	85	55	U			

Index

Α

Accessories 94 ASCII Table 95 Auto Read Standard 21 С Checksum 19 Communication Basic sequence 62 Control bit Code Present 27 Default state 26 Head error 27 Job 26,62 Job End 27, 62 Job Error 27 Job Start 27, 62 Toggle Bit In 26, 62 Toggle Bit Out 27, 62 Control Function 8 CRC check 19, 20

D

Data Integrity 8 Dimensions 14 Display elements 66 Double Bit Header 8

Е

Electrical Data 14 L Input buffer Bit Header 27 Intended Use 6 IP Address 16 AnyBus IPconfig 16 DHCP 16

Μ

Mechanical Data 14

0

Operating conditions 15 Operating Principle 7, 11, 25 Output buffer 26 Bit Header 26

Ρ

Processor Unit Communication 62 Display elements 66 Operating Principle 25 Output buffer 26 Product Description 7, 11

R

Read times 63 Read/write head Generate default state 75 turn-off 75

S

Safety 6 Installation 6 Operation 6 Startup 6

Т

Technical Data Dimensions 14 Electrical Data 14 Mechanical Data 14 Operating conditions 15 Type Code 94 Type, serial number 21

W

Write times 63, 64

www.balluff.com

Headquarters

Germany

Balluff GmbH Schurwaldstrasse 9 73765 Neuhausen a.d.F. Phone + 49 7158 173-0 Fax +49 7158 5010 balluff@balluff.de

Global Service Center

Germany

Balluff GmbH Schurwaldstrasse 9 73765 Neuhausen a.d.F. Phone +49 7158 173-370 Fax +49 7158 173-691 service@balluff.de

US Service Center

USA

Balluff Inc. 8125 Holton Drive Florence, KY 41042 Phone (859) 727-2200 Toll-free 1-800-543-8390 Fax (859) 727-4823 technicalsupport@balluff.com

CN Service Center

China

Balluff (Shanghai) trading Co., ltd. Room 1006, Pujian Rd. 145. Shanghai, 200127, P.R. China Phone +86 (21) 5089 9970 Fax +86 (21) 5089 9975 service@balluff.com.cn